CD3000M-1PH
Thyristor Unit

from 125A to 700A

CD Automation S.r.l.
Via Picasso 34/36 - 20025 - Legnano (MI) - ITALY
Tel +39 0331 577479 – Fax +39 0331 579479
E-Mail: info@cdautomation.com - WEB: www.cdautomation.com
SUMMARY

1 Important warnings for safety ... 5

2 Introduction ... 7
 2.1 Advantages compared with analog thyristor unit 7
 2.2 CD-KP ... 8
 2.3 CD-EASY .. 8
 2.4 Software Configurator ... 9

3 Quick Start ... 10

4 CD3000M Sizing ... 10

5 Identification and Order Code ... 11
 5.1 Identification of the unit ... 11
 5.2 Order Code ... 12

6 Installation .. 13
 6.1 Environmental installation conditions ... 13
 6.2 Dimensions and Weight ... 14
 6.3 Fixing holes ... 15

7 Wiring instructions ... 16
 7.1 Removing the cover .. 16
 7.2 Wiring details .. 17
 7.3 Power Terminals .. 19
 7.4 Command Terminals .. 20
 7.5 Diagram of control connection ... 21

8 Power output features ... 22
 8.1 Derating curve .. 22
 8.2 Cooling fans .. 22

9 Led status and Alarms ... 23
 9.1 LED Status Table ... 23
 9.2 Not Critical Alarm ... 23
 9.3 Calibration Procedure ... 24

10 Firing type ... 25
 10.1 Zero Crossing (ZC) .. 25
 10.2 Single Cycle (SC) ... 25
 10.3 Burst Firing (BF) ... 26
 10.4 Phase Angle (PA) ... 27
 10.5 Delay Triggering (DT) ... 27
11 Connection description ... 28
11.1 Access to the Electronic boards 28
11.2 Supply the Electronic Board 29
11.3 Analog Inputs 30
11.4 Digital Input 32
11.5 Digital Output 33
11.6 PG Connector 34
11.7 RS485 Serial Port 35
11.8 Address configuration 36

12 MODBUS communication .. 37
12.1 MODBUS RTU Protocol 37
12.2 Message Format 37
12.3 Read Holding Registers 39
12.4 Preset Multiple Registers 39
12.5 Error and exception responses 40

13 Configuration Parameters .. 41

14 Internal Fuse ... 44
14.1 Fuse Code 44

15 Maintenance .. 45
15.1 Trouble Shooting 45
15.2 Fans 46
15.3 Maintenance 46
15.4 Repairing procedure 46
15.5 Warranty condition 46
1 Important warnings for safety

This chapter contains important information for the safety. The not observance of these instructions may result in serious personal injury or death and can cause serious damages to the Thyristor unit and to the components system included. The installation should be performed by qualified persons.

- The Thyristor unit are integral part of industrial equipments. When it is supply, the Thyristor unit is subject to dangerous tensions.
 - Don't remove the protection Cover.
 - Don't use these unit in aerospace applications and/or nuclear.

- The nominal current corresponds to use at temperature not superior to 45°C.
 - The Thyristor unit must be mounted in vertical position and without obstruction above and below to allow a good flow ventilation.
 - The hot air of one thyristor unit must not invest the unit positioned above.
 - For side by side placed leave a space of 15mm between the unit.

- A suitable device must ensure that the unit can be electrically isolated from the supply, this allows the qualified people to work in safety.

Protection (Protection, Protezione)
The unit have IP20 protection rating as defined by the specific international. Is necessary consider the place of installation.

Earth (Terre, Messa a terra)
For safety, the Thyristor unit with isolated heat-sink must be connected to earth. Earth impedance should be correspondent to local earth regulation. Periodically the earth efficiency should be inspected.

Electronic supply (Alimentation électronique, Alimentazione elettronica)
The electronic circuit of the Thyristor unit must be supplied by dedicated voltage for all electronic circuits and not in parallel with coil contactors, solenoids and other. It's recommended to use a shielded transformer.

Electric Shock Hazard (Risque de choque électrique, Rischi di scosse elettriche)
When the Thyristor unit is energized, after the power supply is shut off, wait least a minute for allow the discharge of the internal capacitors where there is a dangerous tension. Before working, make sure that:
 - Only authorized personnel must perform maintenance, inspection, and replacement operations.
 - The authorized personnel must read this manual before to have access to the unit.
 - Unqualified People don't perform jobs on the same unit or in the immediate vicinities.
Important warnings (Attention, Avvertenze importanti)
During the operations with units under tension, local regulations regarding electrical installation should be rigidly observed:
- Respect the internal safety rules.
- Don’t bend components to maintain insulation distances.
- Protect the units from high temperature humidity and vibrations.
- Don’t touch components to prevent electrostatic discharges on them.
- Verify that the size is in line with real needs.
- To measure voltage current etc. on unit, remove rings and other jewels from fingers and hands.
- Authorized personnel that work on thyristor unit under power supply voltage must be on insulated board

This listing does not represent a complete enumeration of all necessary safety cautions.

Electromagnetic compatibility (Compatibilità életromagnétique, Compatibilità elettromagnetica)
Our thyristor units have an excellent immunity to electromagnetic interferences if all suggestions contained in this manual are respected. In respect to a good Engineering practice, all inductive loads like solenoids contactor coils should have a filter in parallel.

Emissions (Emission, Emissioni)
All solid-state power controllers emit a certain amount of radio-frequency energy because of the fast switching of the power devices.
The CD Automation’s Thyristor unit are in accord with the EMC norms, CE mark. In most installations, near by electronic systems will experience no difficulty with interference. If very sensitive electronic measuring equipment or low-frequency radio receivers are to be used near the unit, some special precautions may be required. These may include the installation of a line supply filter and the use of screened (shielded) output cable to the load.

Note

Warning: This icon is present in all the operational procedures where the Improper operation may result in serious personal injury or death

Caution: This icon is present in all the operational procedures where the Improper operation can cause damage for the Thyristor unit.

CD Automation reserves the right to modify the own products and this manual without any advise.
2 Introduction

A thyristor unit is a semiconductor device which acts as a switch formed by two thyristors in antiparallel. To switch on the alternating current the input signal will be on and the thyristor will switch off at first Zero Crossing voltage with no input signal. The benefits of thyristor units compared with electromechanical contactors are numerous: no moving parts, no maintenance and the capacity to switch very fast. Thyristors are the only solution to control transformers and special loads that change resistance with temperature and with age.

2.1 Advantages compared with analog thyristor unit

Communication RS485 is a standard feature of CD3000M this allows the use of many information like: current, power, load state and all the parameters for diagnostic and configuration. Ulterior advantages of the digital system vs the analogical is the flexibility and the possibility of implement special characteristics without change the hardware. Several strategies can be implemented and selected through the configuration parameters. With CD-KP, you can have access to the configuration parameters without expose to the dangerous voltage inside the cabinet and without stop the plant.
2.2 CD-KP
The CD-KP is designed to be connected with all CD Automation's Thyristor units via RS485 communication. On front unit is possible to read the principal operational parameters of the unit like: power, tension, current, reference, alarms, etc.
One of these variables can be selected and retransmitted via an isolated output (4÷20mA or 0÷10V).
All the menus (except the operator menu) can be protected by password to avoid accidental change of configuration parameters by unauthorised personnel.
On front unit is also available a plug-in connector RS485 for connect a PC with the Thyristor units without open the cabinet and without stop the production process.

Technical Specification:
- Use in Local/Remote
- Set Point Ramp UP - Down
- Scroll selection of:
 - Set point
 - Power output
 - Current
 - Voltage
- Display indication for:
 - Heater Break alarm
 - SCR short circuit
- Password for configuration parameters
- Plug-in connector on front to use software configurator
- Retransmission (4-20mA or 0-10Vdc) of one of these parameters: Power PV, Current, Voltage.
- Dimension 48x96x92mm (LxAxP)
- Comply with EMC, CE marked

2.3 CD-EASY
CD-EASY is a Memory of support used for maintenance people that is not confident in personal computer.
With the CD-EASY is possible memorize the configuration of one Thyristor Unit and paste it into another in few seconds.
CD-EASY could be loaded with the personal configuration of the unit and stored together with the system drawings in a convenient place, enabling unit reconfiguration within seconds if require.
2.4 Software Configurator

The software configuration is free and is possible to download it from our site:
www.cdautomation.com

If the Order Code is in line with requirement, then CD3000M has been already configured in Factory and it's ready to use. You need the software only to modify the ordered configuration. Anyway we suggest to check the unit on the machine with the "Test unit" section.

For install the software, launch the program and follow the instructions on the screen.

To connect the unit at the PC, it's necessary use the programming cable connected between the PG connector (see par. 11.6) and the serial port RS232 of the PC.

The programming cable is not included.

With the CD-RS serial converter is possible to configure the Thyristor unit also through the RS485 (see par. 11.7). For this solution, the programming cable is not necessary.

Run the software configurator and set the serial port of the PC with con baudrate =9600 and the address of Thyristor unit (default=1).
3 Quick Start

Caution: this procedure must be performed only by qualified persons.

If the Order Code of the Thyristor unit is in line with what you really need, then CD3000M has been already configured in Factory and you just need to do the following steps:

1. Verify the CD3000M Sizing. Making sure that:
 - The load current is equal or less than the MAX current of CD3000M.
 - The load voltage is equal or less than the MAX voltage of CD3000M.
 (see par. 4)
2. Verify the Order Code
 (see par. 5.2)
3. Verify the Installation
 (see par. 6)
4. Verify the Diagram of control connection:
 - All auxiliary connections must be done in line with wirings on this manual.
 - Verify that there isn’t a short circuit on the load.
 - Verify that the Reset Contact on terminal 7 and 8 are closed.
 - With External Enable option give Enable to the unit.
 (see par. 7.5)
5. Supply the Electronic boards
 (see Order Code)
6. Supply the Fan at 230VAC ±15% 50/60Hz (110VAC ±15% 50/60Hz Optional)
 (see par. 8.2)
7. Supply the Power unit
 (see par. 7.3)
8. If you have HB option make the Calibration procedure
 (see par. 9.3)

The CD3000M Thyristor unit is ready to start.

4 CD3000M Sizing

4.1.1 Wiring with resistive load

\[I = \frac{P}{V} \]

V = Nominal voltage phase to phase
I = Nominal current to the load
P = Nominal power to the load

4.1.2 Wiring with inductive load

\[I = \frac{P}{V \cos \phi} \]

V = Nominal voltage phase to phase
I = Nominal current to the load
P = Nominal power to the load
5 Identification and Order Code

5.1 Identification of the unit

Caution: Before to install, make sure that the Thyristor unit have not damages. If the product has a fault, please contact the dealer from which you purchased the product.

The identification’s label give all the information regarding the factory settings of the Thyristor unit, this label is on the unit, like represented in figure. Verify that the product is the same thing as ordered (see par. 5.2).
5.2 Order Code

<table>
<thead>
<tr>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3000M-1PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Max Current of CD3000M

<table>
<thead>
<tr>
<th>125A</th>
<th>200A</th>
<th>400A</th>
<th>600A</th>
<th>150A</th>
<th>300A</th>
<th>500A</th>
<th>700A</th>
</tr>
</thead>
</table>

The Max Current must be equal or more than Load Current.

2 Load Current

Specify this value to configure the unit in CD Automation.

3 Max Voltage of CD3000M

<table>
<thead>
<tr>
<th>480V</th>
<th>600V</th>
</tr>
</thead>
</table>

The Max Voltage must be equal or more than Load Voltage.

4 Auxiliary Voltage (Voltage supply for the Electronic boards)

<table>
<thead>
<tr>
<th>90:130</th>
<th>From 90 to 130Vdc; 10VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>170:265</td>
<td>From 170 to 265Vdc; 10VA</td>
</tr>
<tr>
<td>230:345</td>
<td>From 230 to 345Vdc; 10VA</td>
</tr>
<tr>
<td>300:530</td>
<td>From 300 to 530Vdc; 10VA</td>
</tr>
<tr>
<td>510:690</td>
<td>From 510 to 690Vdc; 10VA</td>
</tr>
</tbody>
</table>

5 Input

<table>
<thead>
<tr>
<th>SSR</th>
<th>4÷30Vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0÷10V</td>
<td>0÷10Vdc</td>
</tr>
<tr>
<td>4÷20mA</td>
<td>4÷20mA</td>
</tr>
<tr>
<td>POT</td>
<td>Potentiometer 10KΩ</td>
</tr>
</tbody>
</table>

6 Firing Type

<table>
<thead>
<tr>
<th>ZC</th>
<th>Zero Crossing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>Single Cycle</td>
</tr>
<tr>
<td>BF</td>
<td>Burst Firing</td>
</tr>
<tr>
<td>S+BF</td>
<td>Soft Start + Burst Firing</td>
</tr>
<tr>
<td>DT</td>
<td>Delay Triggering</td>
</tr>
<tr>
<td>PA</td>
<td>Phase Angle (Without Soft Start and Feed-back)</td>
</tr>
</tbody>
</table>

☐ Specify the number of firing cycles at 50% of the input signal (from 1 to 255)

7 Option

<table>
<thead>
<tr>
<th>IF</th>
<th>Internal fuses (standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>No fuses</td>
</tr>
<tr>
<td>HB</td>
<td>Heater Break Alarm</td>
</tr>
<tr>
<td>CD-KP</td>
<td>External Keypad</td>
</tr>
<tr>
<td>110Fan</td>
<td>Fan voltage supply 110VAC ± 15% (std 230VAC ± 15%) 50/60Hz</td>
</tr>
<tr>
<td>UL</td>
<td>UL Certification</td>
</tr>
</tbody>
</table>
6 Installation

Caution: Don't install near the hot elements or near the units that could give electromagnetic interferences.

The CD3000M Thyristor unit must be always mounted in vertical position to improve air cooling on heat-sink. Maintain the minimum distances in vertical and in horizontal as represented. When more unit has mounted inside the cabinet maintain the air circulation like represented in figure. Sometimes is necessary installing a fan to have better air circulation.

![Diagram of installation](image)

6.1 Environmental installation conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>0-45°C at nominal current. Over 45°C use the derating curve (see par. 8.1)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-25°C to 70°C</td>
</tr>
<tr>
<td>Installation place</td>
<td>Don’t install at direct sun light, where there are conductive dust, corrosive gas, vibration or water and also in salty environmental.</td>
</tr>
<tr>
<td>Altitude</td>
<td>Up to 1000 meter over sea level. For higher altitude reduce the nominal current of 2% for each 100m over 1000m</td>
</tr>
<tr>
<td>Humidity</td>
<td>From 5 to 95% without condense and ice</td>
</tr>
</tbody>
</table>
6.2 Dimensions and Weight

<table>
<thead>
<tr>
<th>Size</th>
<th>W(mm)</th>
<th>H(mm)</th>
<th>D(mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125A (S09)</td>
<td>116</td>
<td>316</td>
<td>187</td>
<td>5</td>
</tr>
<tr>
<td>150A (S09)</td>
<td>116</td>
<td>316</td>
<td>187</td>
<td>5</td>
</tr>
<tr>
<td>200A (S09)</td>
<td>116</td>
<td>316</td>
<td>187</td>
<td>5</td>
</tr>
<tr>
<td>300A (S12)</td>
<td>137</td>
<td>520</td>
<td>270</td>
<td>15</td>
</tr>
<tr>
<td>400A (S12)</td>
<td>137</td>
<td>520</td>
<td>270</td>
<td>15</td>
</tr>
<tr>
<td>500A (S12)</td>
<td>137</td>
<td>520</td>
<td>270</td>
<td>15</td>
</tr>
<tr>
<td>600A (S12)</td>
<td>137</td>
<td>520</td>
<td>270</td>
<td>15</td>
</tr>
<tr>
<td>700A (S12)</td>
<td>137</td>
<td>520</td>
<td>270</td>
<td>15</td>
</tr>
</tbody>
</table>
6.3 Fixing holes

<table>
<thead>
<tr>
<th>Size</th>
<th>A(mm)</th>
<th>B(mm)</th>
<th>C(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125A (S09)</td>
<td>96</td>
<td>290</td>
<td>104</td>
</tr>
<tr>
<td>150A (S09)</td>
<td>96</td>
<td>290</td>
<td>104</td>
</tr>
<tr>
<td>200A (S09)</td>
<td>96</td>
<td>290</td>
<td>104</td>
</tr>
<tr>
<td>300A (S12)</td>
<td>97</td>
<td>490</td>
<td>97</td>
</tr>
<tr>
<td>400A (S12)</td>
<td>97</td>
<td>490</td>
<td>97</td>
</tr>
<tr>
<td>500A (S12)</td>
<td>97</td>
<td>490</td>
<td>97</td>
</tr>
<tr>
<td>600A (S12)</td>
<td>97</td>
<td>490</td>
<td>97</td>
</tr>
<tr>
<td>700A (S12)</td>
<td>97</td>
<td>490</td>
<td>97</td>
</tr>
</tbody>
</table>
7 Wiring instructions

Caution: this procedure must be performed only by qualified persons.

The Thyristor unit could be susceptible to interferences lost by near equipments or by the power supply, for this reason in accord to the fundamental practices rules is opportune take some precautions:

- The electronic circuit of the Thyristor unit must be supplied from a dedicated voltage and not with inductive or capacitive loads. We recommend the use of a screened transformer.
- The coil contactor, the relays and other inductive loads must be equipped with opportune RC filter.
- Use shielded bipolar cables for all the input and output signals.
- The signal cables must not be near and parallel to the power cables.
- Local regulations regarding electrical installation should be rigidly observed.

For safety connect the heat-sink to the earth with his terminal.

7.1 Removing the cover

Instructions for open the thyristor unit size S9

Instructions for open the thyristor unit size S12
7.2 Wiring details

Use copper cables and wires rated for use at 75°C only.

7.2.1 Power cable torque (suggested)

<table>
<thead>
<tr>
<th>Current</th>
<th>Connector Type</th>
<th>Torque Lb-in (N·m)</th>
<th>Wire Range AWG / kcmil</th>
<th>Wire Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>125A, 150A, 200A</td>
<td>Terminal Block M8</td>
<td>265 (30.0)</td>
<td>1 3/0</td>
<td>Copper wire Compact (Solid) Stranded</td>
</tr>
<tr>
<td>300A</td>
<td>Bus Bar with M8 screw</td>
<td>505 (57.0)</td>
<td>2x1/0 350</td>
<td>UL Listed (ZMVV) Copper Tube Crimp. Lug</td>
</tr>
<tr>
<td>400A</td>
<td>Bus Bar with M10 screw</td>
<td>505 (57.0)</td>
<td>2x3/0 600</td>
<td>UL Listed (ZMVV) Copper Tube Crimp. Lug</td>
</tr>
<tr>
<td>500A</td>
<td>Bus Bar with M10 screw</td>
<td>505 (57.0)</td>
<td></td>
<td>Bus bar 60x4mm</td>
</tr>
<tr>
<td>600A</td>
<td>Bus Bar with M10 screw</td>
<td>505 (57.0)</td>
<td></td>
<td>Bus bar 60x5mm</td>
</tr>
<tr>
<td>700A</td>
<td>Bus Bar with M10 screw</td>
<td>505 (57.0)</td>
<td></td>
<td>Bus bar 60x6mm</td>
</tr>
</tbody>
</table>
7.2.2 Power cable dimensions (suggested)

<table>
<thead>
<tr>
<th>Current</th>
<th>Supply Cable</th>
<th>Screw</th>
<th>Load Cable</th>
<th>Screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>AWG M</td>
<td>mm²</td>
<td>AWG M</td>
<td></td>
</tr>
<tr>
<td>125A (S09)</td>
<td>50 1 M8</td>
<td>50 1 M8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150A (S09)</td>
<td>70 1/0 M8</td>
<td>70 1/0 M8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200A (S09)</td>
<td>95 3/0 M8</td>
<td>95 3/0 M8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300A (S12)</td>
<td>2 x 70 2 x 1/0 M8</td>
<td>2 x 70 2 x 1/0 M8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400A (S12)</td>
<td>2 x 95 2 x 3/0 M10</td>
<td>2 x 95 2 x 3/0 M10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500A (S12)</td>
<td>Bus Bar 60 x 4 mm</td>
<td>Bus Bar 60 x 4 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600A (S12)</td>
<td>Bus Bar 60 x 5 mm</td>
<td>Bus Bar 60 x 5 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700A (S12)</td>
<td>Bus Bar 60 x 6 mm</td>
<td>Bus Bar 60 x 6 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.2.3 Cable dimensions (suggested) of Earth and of the Command Terminals

<table>
<thead>
<tr>
<th>Current</th>
<th>Earth Cable</th>
<th>Screw</th>
<th>Command Terminals Cable</th>
<th>Screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>AWG M</td>
<td>mm²</td>
<td>AWG</td>
<td></td>
</tr>
<tr>
<td>125A (S09)</td>
<td>16 6 M6</td>
<td>0,50 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150A (S09)</td>
<td>16 6 M6</td>
<td>0,50 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200A (S09)</td>
<td>25 4 M6</td>
<td>0,50 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300A (S12)</td>
<td>50 1 M8</td>
<td>0,50 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400A (S12)</td>
<td>50 1 M8</td>
<td>0,50 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500A (S12)</td>
<td>70 1/0 M8</td>
<td>0,50 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600A (S12)</td>
<td>70 1/0 M8</td>
<td>0,50 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>700A (S12)</td>
<td>70 1/0 M8</td>
<td>0,50 18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.3 Power Terminals

Warning: Before connecting or disconnecting the unit check that power and control cables are isolated from voltage sources.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Line Input Phase 1</td>
</tr>
<tr>
<td>T1</td>
<td>Load Output Phase 1</td>
</tr>
</tbody>
</table>

CD3000M 1PH 125A÷200A (S09)

CD3000M 1PH 300A÷700A (S12)
7.4 Command Terminals

Warning: Before connecting or disconnecting the unit check that power and control cables are isolated from voltage sources.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Voltage Supply for Electronic Boards (Auxiliary see par. 11.2)</td>
</tr>
<tr>
<td>2</td>
<td>Not Used</td>
</tr>
<tr>
<td>3</td>
<td>Voltage Supply for Electronic Boards (Auxiliary see par. 11.2)</td>
</tr>
<tr>
<td>4</td>
<td>Earth</td>
</tr>
<tr>
<td>5</td>
<td>Fan supply voltage (see par. 8.2)</td>
</tr>
<tr>
<td>6</td>
<td>Fan supply voltage (see par. 8.2)</td>
</tr>
<tr>
<td>7</td>
<td>RESET</td>
</tr>
<tr>
<td>8</td>
<td>RESET</td>
</tr>
<tr>
<td>9</td>
<td>(+)Input command signal SSR, 0÷10V, 4÷20mA, POT</td>
</tr>
<tr>
<td>10</td>
<td>(-)Input command signal SSR, 0÷10V, 4÷20mA, POT</td>
</tr>
<tr>
<td>11</td>
<td>0V GND</td>
</tr>
<tr>
<td>12</td>
<td>Output +8Vdc stabilized 1 mA MAX</td>
</tr>
<tr>
<td>13</td>
<td>(+) Output command for Slave unit</td>
</tr>
<tr>
<td>14</td>
<td>(-) Output command for Slave unit</td>
</tr>
<tr>
<td>15</td>
<td>(+) External Calibration 24 Vdc max</td>
</tr>
<tr>
<td>16</td>
<td>(-) External Calibration 24 Vdc max</td>
</tr>
<tr>
<td>17</td>
<td>Not Used</td>
</tr>
<tr>
<td>18</td>
<td>HB relay contact NC (Max 500mA, 125Vac) Optional (see par. 11.5)</td>
</tr>
<tr>
<td>19</td>
<td>Common HB relay contact (Max 500mA, 125Vac) Optional</td>
</tr>
<tr>
<td>20</td>
<td>HB relay contact NO (Max 500mA, 125Vac) Optional (see par. 11.5)</td>
</tr>
</tbody>
</table>
7.5 Diagram of control connection

Caution: this procedure must be performed only by qualified persons.

![Diagram of control connection](image)

NOTE:
- **¹** The user installation must be protecting by electromagnetic circuit breaker or by fuse isolator.
- **²** The auxiliary voltage supply of the CD3000M unit must be synchronized with load voltage power supply. If the Auxiliary Voltage (written on the identification label) is different from Supply Voltage (to the load), use an external transformer as designated.
- To work, the Reset Contact on terminal 7 and 8 must be closed.

Load Type

<table>
<thead>
<tr>
<th>L2</th>
<th>T1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Resistances and Infrared Lamps**
 - Long and medium waves
- **Transformers and Inductances**
 - (Only with Delay triggering)
8 Power output features

<table>
<thead>
<tr>
<th>Current</th>
<th>Voltage range</th>
<th>Repetitive peak reverse voltage</th>
<th>Latching current</th>
<th>Max peak one cycle</th>
<th>Leakage current</th>
<th>I^2t value max</th>
<th>Frequency range</th>
<th>Power loss</th>
<th>Isolation Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(V)</td>
<td>(480V)</td>
<td>(mAeff)</td>
<td>(10msec.) (A)</td>
<td>(mAeff)</td>
<td>tp=10msec</td>
<td>(Hz)</td>
<td>I=Inom (W)</td>
<td>Vac</td>
</tr>
<tr>
<td>125A</td>
<td>24÷600</td>
<td>1200</td>
<td>1600</td>
<td>450</td>
<td>1540</td>
<td>15</td>
<td>11300</td>
<td>47÷70</td>
<td>146</td>
</tr>
<tr>
<td>150A</td>
<td>24÷600</td>
<td>1200</td>
<td>1600</td>
<td>450</td>
<td>2000</td>
<td>15</td>
<td>19100</td>
<td>47÷70</td>
<td>162</td>
</tr>
<tr>
<td>200A</td>
<td>24÷600</td>
<td>1200</td>
<td>1600</td>
<td>300</td>
<td>4800</td>
<td>15</td>
<td>108000</td>
<td>47÷70</td>
<td>204</td>
</tr>
<tr>
<td>300A</td>
<td>24÷600</td>
<td>1200</td>
<td>1600</td>
<td>300</td>
<td>5250</td>
<td>15</td>
<td>128000</td>
<td>47÷70</td>
<td>320</td>
</tr>
<tr>
<td>400A</td>
<td>24÷600</td>
<td>1200</td>
<td>1600</td>
<td>200</td>
<td>7800</td>
<td>15</td>
<td>300000</td>
<td>47÷70</td>
<td>397</td>
</tr>
<tr>
<td>500A</td>
<td>24÷600</td>
<td>1200</td>
<td>1600</td>
<td>200</td>
<td>8000</td>
<td>15</td>
<td>306000</td>
<td>47÷70</td>
<td>530</td>
</tr>
<tr>
<td>600A</td>
<td>24÷600</td>
<td>1200</td>
<td>1600</td>
<td>1000</td>
<td>17800</td>
<td>15</td>
<td>1027000</td>
<td>47÷70</td>
<td>589</td>
</tr>
<tr>
<td>700A</td>
<td>24÷600</td>
<td>1200</td>
<td>1600</td>
<td>1000</td>
<td>17800</td>
<td>15</td>
<td>1027000</td>
<td>47÷70</td>
<td>712</td>
</tr>
</tbody>
</table>

8.1 Derating curve

$$I_{\text{MAX}} = I_{\text{NOM}} \times K$$

8.2 Cooling fans

The CD3000M thyristor unit is equipped with a cooling fans. The supply voltage is standard 230VAC ±15% 50/60Hz or optional 110VAC ±15% 50/60Hz.

The fan's power consumption is below listed:

<table>
<thead>
<tr>
<th>Size</th>
<th>Number of fans</th>
<th>UL® LISTED Number of fans</th>
</tr>
</thead>
<tbody>
<tr>
<td>125A, 150A</td>
<td>One Fan - 16W</td>
<td>One Fan - 16W</td>
</tr>
<tr>
<td>200A, 300A, 400A, 500A, 600A</td>
<td>One Fan - 16W</td>
<td>Two Fans - 30W</td>
</tr>
<tr>
<td>700A</td>
<td>Two Fans - 30W</td>
<td>Two Fans - 30W</td>
</tr>
</tbody>
</table>
9 Led status and Alarms

9.1 LED Status Table
In front of the thyristor unit there are LED that indicates the state of the Electronic cards:

<table>
<thead>
<tr>
<th>LED For All size</th>
<th>STATUS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aux</td>
<td>○</td>
<td>The power supply is not connected or fault on the electronic board</td>
</tr>
<tr>
<td></td>
<td>●</td>
<td>The power supply is not connected and the Electronic board is OK</td>
</tr>
<tr>
<td>ON</td>
<td>○</td>
<td>OFF Condition (Load IS NOT Powered)</td>
</tr>
<tr>
<td></td>
<td>●</td>
<td>ON Condition (Load IS Powered)</td>
</tr>
<tr>
<td>SC</td>
<td>○</td>
<td>SCR OK</td>
</tr>
<tr>
<td></td>
<td>●</td>
<td>SCR short circuit</td>
</tr>
<tr>
<td></td>
<td>⚫</td>
<td>No External Enable (see par. 11.4)</td>
</tr>
<tr>
<td>HB</td>
<td>○</td>
<td>Load OK</td>
</tr>
<tr>
<td></td>
<td>●</td>
<td>Load Fault</td>
</tr>
<tr>
<td></td>
<td>○</td>
<td>= OFF</td>
</tr>
<tr>
<td></td>
<td>●</td>
<td>= ON</td>
</tr>
<tr>
<td></td>
<td>⚫</td>
<td>= Flashing</td>
</tr>
</tbody>
</table>

9.2 Not Critical Alarm
The Not Critical Alarm, doesn’t stop the thyristor unit. When one of these Not Critical Alarm is active, the HB relay change status (see par. 11.5)

9.2.1 SCR Short Circuit (only with the HB option)
This alarm is active when the thyristor unit read the output current in absence of the input signal. This is possible if there are a short circuit on the thyristor or if there are a wrong wiring of the load. When the problem is solved is necessary use the digital input: “Reset” (Terminals 7-8)
9.2.2 Heater Break alarm HB (only with the HB option)

This alarm is active when the load current decrease under the threshold set on the parameter P124H (see par. 13).

The Heater Break alarm could be active also if there are a wrong wiring of the load.

When the problem is solved is necessary use the digital input: “Reset” (Terminals 7-8).

H.B. circuit read load current via a current transformer internal to the unit.

Minimum current is 10% of the current transformer size’s.

The current transformer size’s depending to the thyristor unit size.

Caution: In the first start, and each time that the load is replaced, it’s necessary make the Calibration procedure.

9.3 Calibration Procedure

The Calibration procedure is an automatic procedure that save in memory the value of load current.

This procedure is necessary if you use the Heater Break Alarm.

To make the Calibration procedure follow these steps:

- Give the power supply.
- Press the “CAL” button on front unit, or use the configurable digital input (see par. 11.4).
- All LEDS are on, this means that calibration procedure is active.
- The CD3000M gives the maximum voltage output.
- After a minute the values of voltage and current are stored in memory.
- the CD3000M comes back to the initial situation.

The Calibration procedure is done.
10 Firing type

Choose an correct firing type allows to optimize the thyristor unit for the installed load. The firing type has already configured in line with customer requirements that are defined in the Order Code. The Order Code is written on the identification label. However, if you wish to change the firing type you can use the software configurator or the parameter on serial link (see par. 13).

Caution: this procedure must be performed only by qualified persons.

10.1 Zero Crossing (ZC)

ZC firing mode is used with Logic Output from temperature controllers and the Thyristor operates like a contactor. The Cycle time is performed by temperature controller. ZC minimizes interferences because the Thyristor unit switches ON-OFF at zero voltage.

10.2 Single Cycle (SC)

Single Cycle it’s the faster zero crossing switching method in relationship of the power demand from a temperature regulator or from an external signal.

- With input signal at 25% the output is one cycle ON and three cycles OFF
- With input signal at 50% the output is one cycle ON and one cycle OFF
- With input signal at 75% the output is three cycles ON and one cycle OFF
- With input signal at 76% the output is the same of 75% but for each ON cycle the microprocessor divides 76/75, and when the sum of rests is one, the unit does one more cycle ON. For this firing is necessary to have analog input.

The Single Cycle is used to control the loads with low inertia or for infrared lamps to short wave.
10.3 Burst Firing (BF)

The Burst Firing is similar to the Single Cycle, but consecutive cycles ON are selectable between 2 and 255, with input signal equal at 50%.

Burst Firing is a method zero crossing that it reduces the electromagnetic interferences because the thyristor switches at zero voltage crossing.

The example show the Burst Firing with Burst cycles: P126L=4

10.3.1 Soft Start with Burst Firing (S+BF)

This is an additional function to the Burst Firing. The unit start in phase angle mode with a ramp starting from zero up to the full tension in the time setted in the parameter P125H.

When the ramp is over, the thyristor unit will stay in conduction at full voltage up to the end of cycles of burst. The S+BF firing is used to control small inductive loads to avoid inrush surge current and to reduce the electromagnetic interferences.

The example show the firing with Burst cycles: P126L=4 and ramp time: P125H=12 (60msec) at 50Hz.
10.4 Phase Angle (PA)

The Phase Angle firing allow the control of the power on the load, for this firing the thyristor can be in conduction only for a part of the voltage cycle. This part of the voltage cycle is adjustable in function of the input signal from 0 at 100%. The PA firing is normally used for control the inductive loads. The only disadvantage with phase angle is the possible generation of interferences that however can be reduced with opportune filters.

10.5 Delay Triggering (DT)

The Delay Triggering firing is used the control a primary of transformer coupled with the normal resistances on the secondary (N.B. don't connect cold resistances on the secondary like: Superkanthal, Molybdenum, Platinum, Tungsten, Quartz Lamp). For an inductive load (ex transformer), switching the thyristors at zero crossing can generates transient over currents that can blow the fuses, to avoid this problem you must use the Delay Triggering. This firing delay the first half cycle of Burst.

For abil this function is also necessary set the jumper J1 on the Front PCB card in A-B position (see par. 11.1)
11 Connection description

11.1 Access to the Electronic boards

To have access to the electronic boards the user must remove the unit’s cover (see par.7.1)

Warning: Before operate, be sure that power and control cables are isolated from voltage sources.
11.2 Supply the Electronic Board

The CD3000M thyristor unit, to work, requires a voltage supply for the electronic boards. The Max consumption is 10VA.

The voltage supply for the electronic boards is configured in line with customer requirements that are defined in the Order Code. The Order Code is written on the identification label.

Warning: Before connecting or disconnecting the unit check that power and control cables are isolated from voltage sources.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Voltage Supply for Electronic Boards (Auxiliary Voltage)</td>
</tr>
<tr>
<td>2</td>
<td>Not Used</td>
</tr>
<tr>
<td>3</td>
<td>Voltage Supply for Electronic Boards (Auxiliary Voltage)</td>
</tr>
<tr>
<td>4</td>
<td>Earth</td>
</tr>
</tbody>
</table>

To change auxiliary supply voltage sold the correct link-jumper on CD3x00 board

The type of mounted transformer depends on the chosen Voltage in the order code.

(See par. 5.2)

<table>
<thead>
<tr>
<th>Transformer Type</th>
<th>Link-Jumper J9+J11</th>
<th>Link-Jumper J10</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR-605 120V</td>
<td>90:130V</td>
<td>-</td>
</tr>
<tr>
<td>TR-605 230V</td>
<td>170:265V</td>
<td>300:530V</td>
</tr>
<tr>
<td>TR-605 300V</td>
<td>230:345V</td>
<td>510:690V</td>
</tr>
</tbody>
</table>

If the Auxiliary Voltage (written on the identification label) is different from Supply Voltage (to the load), use an external transformer with primary equal to load voltage and secondary equal to the Auxiliary Voltage.
11.3 Analog Inputs

CD3000M thyristor unit have an analogue input to drive the output power.

11.3.1 Input command signal configuration (Terminals 9 and 10 see par. 7.4)

The Input command signal is already configured in line with customer requirements that are defined in the complete product code. The product code is written on the identification label. However, if you wish to change the input type (i.e. from 0-10V to 4-20mA) proceed as follows:

Warning: this procedure can be done just by specialized personnel

To configure the input type, set the jumper as below represented:

<table>
<thead>
<tr>
<th>Type</th>
<th>Input features</th>
<th>J7</th>
<th>J16</th>
<th>J17</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSR</td>
<td>Current drain</td>
<td>5mA</td>
<td>C-B</td>
<td>C-B</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td>≥ 4Vdc Max 30Vdc</td>
<td>C-B</td>
<td>C-B</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>< 1Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-10V</td>
<td>Impedance</td>
<td>10KΩ</td>
<td>C-B</td>
<td>B-A</td>
</tr>
<tr>
<td>POT</td>
<td>Impedance</td>
<td>10KΩ min</td>
<td>C-B</td>
<td>B-A</td>
</tr>
<tr>
<td>4-20mA</td>
<td>Impedance</td>
<td>100Ω</td>
<td>B-A</td>
<td>B-A</td>
</tr>
</tbody>
</table>

When operator finishes to configure the hardware setting he must do the input calibration procedure
11.3.2 Input calibration procedure

Warning: this procedure can be done just by specialized personnel

This procedure is needed only if you change the input type

Start TUNE

Auxiliary power supply OFF

Mantain Key CAL pushed and give the power supply

Release key when red and yellow led are ON

Yellow and Red leds are flashing

Start TUNE

Auxiliary power supply OFF

Mantain Key CAL pushed and give the power supply

Release key when red and yellow led are ON

Yellow and Red leds are flashing

Wait for more than 10 sec. from start flashing yellow and red leds

The leds will stop flashing

SSR Input is tuned

Within 10 sec. from start flashing yellow and red leds push again momentary CAL Key

Yellow led only is flashing, apply 0 input Signal I.E.: 0V for 0-10V 4mA for 4-20mA

Now press CAL Key again

Red led only is flashing, apply 10V for 0-10V input or 20mA for 4-20mA input

Now press CAL Key again

Analog input is tuned

End TUNE
11.4 Digital Input

CD3000M thyristor unit has two digital inputs.

11.4.1 Configurable Input (Terminals 15 and 16 see par. 7.4)

This digital input is configurable and can be:

- **External Calibration (Standard):**
 The Calibration input activates the Calibration procedure that is necessary if you use the Heater break alarm (see par. 9.3). Supply with 24Vdc terminals 15-16 to start the Heater Break procedure.

- **External Enable:**
 Without Enable the out is always to zero and red led (SC) flashing, otherwise the out will follow the input signal.

To configure the input type, set the jumper as below represented:

Warning: this procedure can be done just by specialized personnel

<table>
<thead>
<tr>
<th>Type</th>
<th>J12</th>
<th>J6</th>
<th>J14</th>
<th>J15</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Calibration</td>
<td>C-B</td>
<td>C-B</td>
<td>Open</td>
<td>Close</td>
</tr>
<tr>
<td>External Enable</td>
<td>B-A</td>
<td>Open</td>
<td>Open</td>
<td>Close</td>
</tr>
</tbody>
</table>

If you use the input like External Enable, is not possible use the input for the “Heater Break procedure”.

11.4.2 Reset (Terminals 7 and 8 see par. 7.4)
The Reset Alarm is used for restore the unit after an alarm occurs (see par. 9.2). Open link to terminals 7-8 to stop the CD3000M thyristor unit and reset the alarm.

11.5 Digital Output
CD3000M thyristor unit with HB option has 1 digital output with relay contact (Max 500mA, 125Vac) that gives indications of the alarms state, the contacts can be (NO and NC).

11.5.1 HB alarm contact (Only with HB Option - see par. 9.2)
The contact at terminals 19-20 is normally open (NO):

- In normal conditions (without alarm) and with auxiliary power supply, the contact to the terminals has opened (relay coil energized).
- In alarm condition or without auxiliary power supply the contact to the terminals is closed (relay coil not energized).

Also you can use the NC (closed without alarm) contact at terminals 18-19
11.6 PG Connector

The PG Connector is used to configure the thyristor unit with the configuration software and with the programming cable. The programming cable is not included.
11.7 RS485 Serial Port

CD3000M have a serial communication port RS485. On this port may be done a network up to 255 unit.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PMS5 (+5V)</td>
</tr>
<tr>
<td>2</td>
<td>GND 0V</td>
</tr>
<tr>
<td>3</td>
<td>GND 0V</td>
</tr>
<tr>
<td>4</td>
<td>Reserved (Rxd0)</td>
</tr>
<tr>
<td>5</td>
<td>GND 0V</td>
</tr>
<tr>
<td>6</td>
<td>RS485 A</td>
</tr>
<tr>
<td>7</td>
<td>RS485 B</td>
</tr>
<tr>
<td>8</td>
<td>nc</td>
</tr>
<tr>
<td>9</td>
<td>Reserved (Txd0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>RS485 B</td>
</tr>
<tr>
<td>A</td>
<td>RS485 A</td>
</tr>
</tbody>
</table>
11.8 Address configuration

The thyristor unit is assigned a unique device address by the user in the range 1 (default) to 255. This address is used to recognise the messages queries to her assigned. The thyristor unit does not respond at the messages queries that don't have the same assigned address. The thyristor unit will also accept global messages (Broadcast) sends at the address 0. No responses are returned for globally addressed queries.

To configure communication address remove cover and set the dip-switch as below specified:

Convert the Address Number in Binary for Example: 150 Dec = 10010110 Bin

The dip switch number corresponds to the bit number:

<table>
<thead>
<tr>
<th>Address Number</th>
<th>Dip Switch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 Dec -> 10010110 Bin</td>
<td>1 (On) 0 (Off) 0 (Off) 1 (On) 0 (Off) 1 (On) 1 (On) 0 (Off)</td>
</tr>
</tbody>
</table>

For convert the Number in Binary you can use this method:

Dip Switch Number have this value:

<table>
<thead>
<tr>
<th>Dip Switch Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 7 6 5 4 3 2 1</td>
</tr>
<tr>
<td>128 64 32 16 8 4 2 1</td>
</tr>
</tbody>
</table>

The Address Number Ex. 150 = 128(Dip 8) + 16(Dip 5) + 4(Dip 3) + 2(Dip2)
12 MODBUS communication

The serial communication port of the thyristor unit is two-wire RS485 type. This port uses an half-duplex system.

When a Unit must transmit active the transmission line, and when there are not units in transmission the outputs are fixed to high impedance.

The serial communication port allows to communicate between the thyristor units and a MASTER device (ex. an computer or a terminal). The cable must be rated for use to data transfer.

12.1 MODBUS RTU Protocol

The communication is based on the standard industrial MODBUS RTU with the following restrictions:

- The Baud rate is 9600 Baud.
- The Preset Multiple Registers (Funct. 16) is limited to the writing of a single parameter for message.

The following MODBUS functions are supported:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>Read Holding Registers</td>
</tr>
<tr>
<td>16</td>
<td>Preset Multiple Registers</td>
</tr>
</tbody>
</table>

The unit support the Broadcast messages:

It' possible send a Broadcast messages using the address 0, all the units respond at the message without sending back any reply.

12.2 Message Format

The transmission format is a 1 bit start, 8 data bit, and 1 bit stop with no parity verification.

Each message terminate after a said time of "time out", equal at 3.5 time of a character transmission, where there are not transitions on the transmission line.

The first Byte of each message is always the address of the unit that is a value from 1 to 255 or 0 for the broadcast messages, the second is always the function number, and the rest of the message depends of the function demand.

When a Slave receive an message, the unit send an answer with the same structure but with the information demanded.

Each message is followed by CRC (Cyclic Redundancy Check) with two byte. The CRC identify the incongruity situations of the message, in this case the receiver ignore the message.

The CRC is calculated in accordance with a formula that imply a recursive division of the data by a polynomial.

The polynomial divisor is:

\[2^{16} + 2^{15} + 2^2 + 1 (\text{Hex } 18005)\]

but is modified in two ways:

- Since the bits order are reversed, then the binary pattern is also reversed, and the most significant bit (MSB) is the right-most bit.
- Since interest only the remainder, the right-most bit could be discarded.

Therefore, the polynomial divisor has value: Hex A001

Normal bit order:

<table>
<thead>
<tr>
<th>Most significant bit</th>
<th>Least significant bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most significant Byte</td>
<td>Least significant Byte</td>
</tr>
</tbody>
</table>

Reversed bit order:

<table>
<thead>
<tr>
<th>Least significant bit</th>
<th>Most significant bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least significant Byte</td>
<td>Most significant Byte</td>
</tr>
</tbody>
</table>

N.B.: With the reversed bit order, also the CRC16 returns the with the reversed bit order
The following flow-diagram show how to organize the CRC 16 bit.

C Language CRC 16 Example

static short CRC16 (unsigned char *p_first, unsigned char *p_last)
{
 unsigned int crc=0xffff;
 short j;
 for (;p_first<=p_last;p_first++)
 {
 crc ^= *p_first;
 for(j=8;j>0;j--)
 {
 if(crc & 0x0001)
 {
 crc = crc >> 1;
 crc ^= 0xA001;
 }
 else
 {
 crc = crc >> 1;
 }
 }
 }
 return (crc);
}
12.3 Read Holding Registers

This function reads the instantaneous value of a specified number of parameters from an address. The message is composed by 8 Byte: one Byte is for the address, one for the function (03 Hex), two Byte for the first parameter to read, two Byte for the total number of parameters to read and finally two Byte for the CRC:

<table>
<thead>
<tr>
<th>Address Unit</th>
<th>Function</th>
<th>Address of the First Parameter</th>
<th>N° of the Parameter</th>
<th>CRC 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3Hex</td>
<td></td>
<td>HI LO</td>
<td>HI LO</td>
<td>LO HI</td>
</tr>
</tbody>
</table>

The answer is an echo of the first two Byte (address and function), one byte with the number of following byte to exclusion of the CRC, the demanded values and finally two Byte for the CRC:

<table>
<thead>
<tr>
<th>Address Unit</th>
<th>Function</th>
<th>N° of Byte</th>
<th>First Parameter Value</th>
<th>Last parameter value</th>
<th>CRC 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3Hex</td>
<td></td>
<td>HI LO</td>
<td>... HI LO</td>
<td>LO HI</td>
<td></td>
</tr>
</tbody>
</table>

12.4 Preset Multiple Registers

This function could write only a parameter for each message. The message is composed by 11 Byte: one Byte for the address, one for the function (10 Hex), two Byte for first parameter to write, two Bytes for the N° of parameters, fixed to 1 (0001 Hex), one Byte with the number of following Bytes, fixed to 2 (02 Hex), two Byte for the CRC:

<table>
<thead>
<tr>
<th>Address Unit</th>
<th>Function</th>
<th>Address of the First Parameter</th>
<th>N° of the Parameter</th>
<th>N° of Byte</th>
<th>Value to write</th>
<th>CRC 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 10Hex</td>
<td></td>
<td>HI LO</td>
<td>0 1</td>
<td>2</td>
<td>HI LO</td>
<td>LO HI</td>
</tr>
</tbody>
</table>

The answer is an echo of the first two Byte (address and function), two Byte for first written parameter, two Byte with the N° of parameters, fixed to 1 (0001 Hex), two Byte for the CRC:

<table>
<thead>
<tr>
<th>Address Unit</th>
<th>Function</th>
<th>Address of the First Parameter</th>
<th>N° of the Parameter</th>
<th>CRC 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 10Hex</td>
<td></td>
<td>HI LO</td>
<td>0 1</td>
<td>LO HI</td>
</tr>
</tbody>
</table>
12.5 Error and exception responses

If a message contains an altered character, if fails the CRC, or if the received message contains a syntax error (for example the number of the byte or of the words is not correct), then the unit will ignore the message.

If the received message is correct but contains a not valid value, the unit will send an answer of exception (5 byte):

<table>
<thead>
<tr>
<th>Address Unit</th>
<th>Function</th>
<th>Error Code</th>
<th>CRC 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI</td>
</tr>
</tbody>
</table>

The byte with the function number, represent the function number of the message that has caused the error with the first Bit set to 1 (ex. the function 3 becomes 0x83) The error code could be one of the followings:

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Name</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ILLEGAL FUNCTION</td>
<td>Function not supported.</td>
</tr>
<tr>
<td>2</td>
<td>ILLEGAL DATA ADDRESS</td>
<td>Address out of range.</td>
</tr>
<tr>
<td>3</td>
<td>ILLEGAL DATA VALUE</td>
<td>Attempt to write invalid or action not carried out.</td>
</tr>
</tbody>
</table>

NOTE: If you write a parameter's value equal at his actual value this is a valid transaction and don’t cause an error.
13 Configuration Parameters

The Configuration Parameters are accessible from the software configurator or through the serial communication port RS485.

P001 (H01) **Load Current** R
Function: This parameter shows the Current rms value.
Min/Max: 0 ÷ 255 (0 ÷ FF Hex)
Value: Value depends of current transformer and from his size's
Example: With current transformer (CT) 150/0.05A, the max value corresponds to the max value of the CT:
Read value=255 (FF Hex) -> Load Current= 150A

P002 (H02) **Set-point HB** R/W
Function: This parameter is the Set-point of current below which HB alarm occurs.
Min/Max: 0 ÷ 255 (0 ÷ FF Hex)
Value: This value is the load current(P001) minus % value of parameter P124H.

P003 (H03) **Status Table** R
Function: It's a tab in bit that represent the “Status” of thyristor unit
Value:
Bit 0 = 1 -> Short circuit on SCR
Bit 1 = 1 -> Load Failure (HB Alarm)
Bit 2 = 1 -> Output signal ON
Bit 3 = 1 -> HB Calibration in progress

P004 (H04) **Command Table** R/W
Function: It’s a tab in bit for remote commands via RS485
Value:
Bit 0 = 1 -> Activate HB Calibration procedure
Bit 1 = 1 -> Input Command from RS485 (see P005)
Bit 2 = 1 -> Disable Output signal (Only with Input from RS485)
Bit 3 = 1 -> Reset HB Alarm
Note:
When unit is switch off all command parameter are set to 0

P005 (H05) **Input command signal** R
Function: This parameter reads the Input command signal (see par. 7.4)
When the P004 Bit1 =1 This parameter could be written and become the Input Command from RS485
Min/Max: 0 ÷ 255 (0 ÷ FF Hex)
Example:
Input 4mA -> P005 = 0 (0%)
Input 12mA -> P005 = 128 (50%)
Input 20mA -> P005 = 255 (100%)

P006 (H06) **Power adjust** R/W
Function: Its’ a scaling factor of the Input command signal
Min/Max: 0 ÷ 255 (0 ÷FF Hex)
Value:
from 0 = 0% of Output,
To 255 = 100% of Output.
Note:
This parameter limit the Output Power

```
<table>
<thead>
<tr>
<th>Input %</th>
<th>OUT %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
</tr>
</tbody>
</table>
```

```
Power Adjust = 100%
Power Adjust = 80%
Power Adjust = 40%
```

41
CD Unit ID
Function: This parameter Identify the CD type Family
Value: CD01 Hex = CD1000-CD3000M Family

CD Ver
Function: This parameter is for internal use

Password
Function: This parameter give the access to configuration
Min/Max: 0 ÷ FFFF Hex
Value: 9357 Hex = Writing parameters activated
any value = Writing parameters disabled
Note: When the CD3000M comes out and then re-lighted, for change the parameters you must re-insert the password.

Byte Lo = Delay trigger (Only for 1PH version)
Function: This parameter is the delay of firing in first half period with respect zero voltage crossing
Min/Max: 0 ÷ 50 (0 ÷32 Hex)
Value: Each step is 0,1msec
Default: 30

Byte Hi = HB sensibility
Function: This parameter is the maximum reduction of Load Current to establish the HB Alarm
Min/Max: 0 ÷ 100 (0 ÷64 Hex)
Value: 0 = 0% of Nominal Current
255 = 100% of Nominal Current
Default: 51
Note: When you change this parameter, HB Calibration procedure is necessary.

Byte Lo = Firing type
Function: This parameter set the Firing Type
Value: 01 Hex = Zero Crossing
02 Hex = Single Cycle (Only for 1PH version)
03 Hex = Burst Firing
13 Hex = Burst Firing+ Soft Start (Only for 1PH version)
23 Hex = Burst Firing+ Delay trigger (Only for 1PH version)
24 Hex = Phase Angle (Only for 1PH version)
Default: 3 (if not specified in the Order Code)

Byte Hi = Soft start time (Only for 1PH version)
Function: The Unit starts in phase angle mode with a ramp starting from zero up to full voltage in a presetted and Adjustable time. The time is setted by this parameter
Min/Max: 0 ÷ 255 (0 ÷FF Hex)
Value: Each step is 5msec
Default: 4
Note: Value of this parameter must be less than cycle time. For burst firing this parameter must be less than:
50Hz -> 20msec x Number of cycles (P126L).
60Hz -> 16,6msec x Number of cycles (P126L).

Byte Lo = Number of cycles (Burst)
Function: This parameter defines the number of voltage cycles in ON condition at 50% of power demand
Min/Max: 1 ÷ 255 (0 ÷FF Hex)
Value: Each step is 1 cycle
Default: 8 (if not specified in the Order Code)
P126H (H7E)
Byte Hi = HB Delay time
Function: This parameter sets a delay to have HB alarm active
Min/Max: $0 \div 255$ (0 ÷ FF Hex)
Value: Each step is 50msec
Default: 3
Note: If Soft start option is enabled HB Delay time must be greater than Soft start time: $P126H \times 50msec > P125H \times 10msec$
When Zero Crossing firing is used must be less than Cycle time: $P126H \times 50msec < P127H \times 50msec$

P127L (H7F)
Byte Lo = Max power for SSR Input
Function: When SSR input is used it represents the value of the power (%) when it is in ON status
Min/Max: $0 \div 255$ (0 ÷ FF Hex)
Value:
from 0 = 0% of Output,
to 255 = 100% of Output
Default: 255

P127H (H7F)
Byte Hi = Cycle time
Function: The Cycle Time is the time which the Thyristor modulates to obtain the power demand
Min/Max: $0 \div 255$ (0 ÷ FF Hex)
Value: Each step is 50msec
Default: 60 (3C Hex) = Zero Crossing
240 (F0 Hex) = Burst Firing
Example: With a Cycle time at 4 sec:
25%-> 1sec 0n+3sec off
50%-> 2sec 0n+2sec off
75%-> 3sec 0n+1sec off

P128L (H80)
Byte Lo = Number of half period (DT firing)
Function: This parameter defines the number of half period in delay of firing.
Min/Max: $1 \div 255$ (0 ÷ FF Hex)
Value: Each step is 1 half period
Note: Must be setted at 1
14 Internal Fuse

The CD3000M thyristor unit have internal fuse extrarapid at low I^2t for the thyristor protection of against the short-circuits.
The fuse must have I^2t lower than the thyristor one (I^2t max)

Caution: USE ONLY EXTRARAPID FUSE WITH APPROPRIATE I^2T

14.1 Fuse Code

<table>
<thead>
<tr>
<th>Size</th>
<th>Fuse Code</th>
<th>Current (A RMS)</th>
<th>I^2T (A²sec)</th>
<th>Vac</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>125A (S09)</td>
<td>FU200FEE</td>
<td>200</td>
<td>11400</td>
<td>660</td>
<td>1</td>
</tr>
<tr>
<td>150A (S09)</td>
<td>FU200FEE</td>
<td>200</td>
<td>11400</td>
<td>660</td>
<td>1</td>
</tr>
<tr>
<td>200A (S09)</td>
<td>FUURE315</td>
<td>315</td>
<td>82000</td>
<td>660</td>
<td>1</td>
</tr>
<tr>
<td>300A (S12)</td>
<td>FU350FMM</td>
<td>350</td>
<td>105000</td>
<td>660</td>
<td>1</td>
</tr>
<tr>
<td>400A (S12)</td>
<td>FU550FMM</td>
<td>550</td>
<td>215000</td>
<td>660</td>
<td>1</td>
</tr>
<tr>
<td>500A (S12)</td>
<td>FU700FMM</td>
<td>700</td>
<td>420000</td>
<td>660</td>
<td>1</td>
</tr>
<tr>
<td>600A (S12)</td>
<td>2xFU450FMM</td>
<td>900</td>
<td>420000</td>
<td>660</td>
<td>1</td>
</tr>
<tr>
<td>700A (S12)</td>
<td>2xFU450FMM</td>
<td>900</td>
<td>420000</td>
<td>660</td>
<td>1</td>
</tr>
</tbody>
</table>

Caution: The Fuses must have I^2t 20% less than thyristor's I^2t.

Caution: High speed fuses are used only for the thyristor protection and can not be used to protect the installation.

Caution: The warranty of thyristor is null if no proper fuses are used. See tab.

Warning: The user installation must be protected by electromagnetic circuit breaker or by fuse isolator.
15 Maintenance

15.1 Trouble Shooting

Small problems sometimes can be solved locally with the help of the below tab of trouble shooting. If you don’t succeed, contact us or your nearest distributor.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Indication on front unit</th>
<th>Possible reasons of the symptom</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyristor unit doesn’t go in conduction with input signal</td>
<td>Green LED (Aux) always light off</td>
<td>- No voltage auxiliary power</td>
<td>Give auxiliary voltage supply (see wiring diagram)</td>
</tr>
<tr>
<td></td>
<td>Green LED (Aux) light on Green LED (ON) light off</td>
<td>- No input signal - Reversed polarities of input signal - Reset contact is open</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green LED (Aux) light on Green LED (ON) light on</td>
<td>- Fuse failure - Load failure - Load connection interruption - Thyristor faulty and always in open circuit With HB option the yellow led (HB) is light on</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green LED (Aux) always light off.</td>
<td>- Wrong wiring - Short circuit on thyristor If there is HB option the red LED (SC) is light on</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow LED (HB) light on</td>
<td>- HB circuit not tuned - Current transformers not properly wired</td>
<td>Make HB calibration procedure Control current transformers wiring</td>
</tr>
<tr>
<td></td>
<td>Red LED (SC) light on</td>
<td>- HB circuit not tuned</td>
<td>Make HB calibration procedure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Wrong input signal selection. - Wrong input signal calibration (out of range). - Auxiliary voltage supply out of limits</td>
<td>Control input signal setting. Repeat input calibration procedure. Verify the auxiliary voltage supply</td>
</tr>
</tbody>
</table>
15.2 Fans
The thyristor unit with forced ventilation uses fans that rotate permanently when the unit is supplied. In case of fan failure, the heat-sink can be reach high temperature. In this case to give protection to thyristor there is a thermal switch properly setted. The function of this switch is to open the input signal until the heat-sink temperature falls below the setted value. This means that also with input signal in ON condition the unit is switched OFF and the system can not work at full power. For this reason is important to control periodically the fans status checking that are rotating.

15.3 Maintenance
For maintain a correct cooling, the consumer must clean the heat-sink and the protective grate of the fans. The frequency of these operations depends on the atmospheric local pollution. Check also that the screw of the power terminals and earth terminals are shut correctly (see Diagram of control connection).

15.4 Repairing procedure
- Phone to CD Automation.
- Explain to Service Engineer the problem because sometimes it can be solved with a phone call. If this is not possible, ship the unit to CD Automation or to your distributor.
- Write a fault description and give the name of your personnel to which refers.
- Use a rugged packaging to ship the unit.

15.5 Warranty condition
CD Automation gives a 12 months warranty to its products. The warranty is limited to repairing and parts substitution in our factory and does exclude products not properly used and fuses. Warranty does not include products with serial numbers deleted. The faulty product should be shipped to CD Automation at customer's cost and our Service will evaluate if product is under warranty terms. Substituted parts remain of CD Automation property.