Revo CL 1Ph
Thyristorleistungsregler
280A ÷ 700A

CD Automation S.r.l.
Via Picasso 34/36 - 20025 – Legnano (MI) – ITALY
Tel +39 0331 577479 – Fax +39 0331 579479
E-Mail: info@cdautomation.com - WEB: www.cdautomation.com

Ihr Thyristorpartner im deutschsprachigen Raum

CD.AUT-KUNST GmbH & Co. KG
1080 Wien, Josefstädter Strasse 43-45/ Stiege 1 – ÖSTERREICH.
Tel: +43 1 994 9595 25 - Fax +43 1 994 9009
E-Mail: office@cdaut-kunst.at – WEB: www.cdautomation.at
INHALTSVERZEICHNIS

1 Wichtige Sicherheitshinweise ... 6
2 Anmerkungen .. 7
3 Einführung ... 8
4 Vorteile gegenüber analogen Thyristorstellern .. 8
5 Konfigurationssoftware "CDA Thyristor Konfigurator" .. 9
6 Schnellstart .. 10
7 Schaltungen und Dimensionierung ... 11
 7.1 1PH Schaltung mit Widerstandslast ... 11
 7.2 1PH Schaltung mit induktiver Last .. 11
 7.3 3-ph offene Dreieckschaltung (6-L) mit Widerstandslast (3 X REVO CL) 11
8 Überprüfung und Bestellkode .. 12
 8.1 Identifikation des Gerätes .. 12
 8.2 Bestellkodierung ... 13
9 Technische Daten .. 14
 9.1 Allgemeines: .. 14
 9.2 Eingang: ... 14
 9.3 Ausgangsdaten (Leistungshalbleiter): ... 14
 9.4 Lüfter Kenndaten .. 14
 9.5 Umgebungs- und Arbeitsbedingungen .. 15
 9.6 Derating Kurve .. 15
10 Installation .. 15
 10.1 Abmessung und Gewicht ... 16
 10.2 Montagebohrungen ... 17
11 Verdrahtungs-Anweisung ... 18
 11.1 Öffnen der Abdeckung ... 18
 11.2 Klemmenanordnung ... 19
 11.3 Leistungsklemmen .. 20
 11.4 Drehmomente für Leistungsklemmen (empfohlen) .. 21
 11.5 Dimensionierung Leistungsanschluss (empfohlen) .. 21
 11.6 Dimensionierung Erdanschluss und Steuersignale (empfohlen) ... 22
 11.7 Steuerklemmen bei Geräten Baugrösse S9 (280A) .. 22
 11.8 Anschlussdiagramm für Gerät Baugrösse S9 (280A) .. 23
 11.9 Anschlussbild .. 24
 11.10 Steuerklemmen bei Geräten Baugrösse S12 (400-700A) ... 25
 11.11 Anschlussbild für Geräte Baugrösse S12 (400-700A) ... 26
 11.12 Anschlussdiagramm für Geräte der Baugrösse S12 (400-700A) ... 27
12 Bedien- und Anzeigeeinheit ... 28
 12.1 Die Parameterlisten ... 29
13 Eingangs-/Ausgangs-Signale ... 30
 13.1 Digitale Eingänge ... 30
 13.1.1 START/STOP (KLEMME 16 BEI S9 , KLEMME 5 BEI S12) DIG. EINGANG 2............................ 30
13.1.2 Konfigurierbarer Eingang (Klemme 15 bei S9, Klemme 6 bei S12) DIG. Eingang 1 ... 30
13.1.3 Digitalausgang (Klemmen 18-19-20 bei S9, Klemmen 1-2-3 bei S12) ... 30
13.2 Analogeingänge

13.2.1 Haupteingang (Klemmen 9 and 10 bei S9, Klemmen 11-12 bei S12) ... 30

14 Heizleiterbruch und Thyristorkurzschluss Alarm (HB) .. 31
14.1 HB Kalibrierung
14.2 HB Alarmrelais (digitaler Ausgang)

15 Betriebsart .. 32
15.1 Phasenanschnitt PA
15.2 Soft Start mit PA (S+PA)
15.3 Delayed Trigger mit Pulspaketen DT + BF
Pulspaket Betrieb (BF)

16 Wirkungsweise der Strombegrenzung .. 35
16.1.1 Einstellung der Stromgrenze (Begrenzung) ... 35
16.1.2 Einstellung online mit Last ... 35

17 Rückführung .. 36
17.1 Hilfsversorgung

18 Analogeingang ... 38
18.1 Haupteingang

19 RS485 Serielle Schnittstelle .. 39

20 PG Stecker (Programmiergeräte Stecker) .. 40

21 MODBUS Kommunikation .. 41
21.1 MODBUS RTU Protokoll
21.2 Telegramm Format
21.3 Halteregister lesen (n Wörter lesen) – Funktion 03
21.4 Halteregister schreiben (nur 1 Wort)
21.5 Fehler- und Statusantworten
21.6 Definition der Geräteadresse

22 Konfigurations- Parameter .. 45

23 Interne Halbleitersicherungen .. 51

24 Wartung .. 52
24.1 Fehlerdiagnose
24.2 Garantiebedingungen
Dichiarazione di Conformità

Declaration of Conformity

PRODUTTORE:
PRODUCT MANUFACTURER: CD Automation S.R.L.

INDIRIZZO:
ADDRESS: Via Pablo Picasso 34//36
20025 Legnano (Mi)
Italia

Dichiara che il prodotto:
Declare that the product:

RevoCL, 1ph da 280 a 700A

SODDISFA I REQUISITI DELLA NORMA :
Specifica di sicurezza EN60947-1 :2008
EN60947-4-3:2001
Specifica sulle emissioni EN60947-4-3:2000
Specifica sulle Immunità EN60947-4-3:2000

FULFILLS THE REQUIREMENTS OF THE STANDARD:
Electrical safety Standard EN60947-1 :2008
EN60947-4-3:2001
Generic Emission standard EN60947-4-3:2000
Generic Immunity standard EN60947-4-3:2000

CDAutomation dichiara che I prodotti sopra menzionati sono conformi alla direttiva EMC 2004/108/CEE e alla direttiva Bassa Tensione (low Voltage) 2006/95/CEE

DESCIZIONE DEL PRODOTTO: Unità di controllo potenza elettrica
PRODUCT DESCRIPTION: Eletric power controll

UTILIZZO: Controllo processi termici
SCOPE OF APPLICATION: Thermal control process

Data di emissione: 20/04/2010
Issued on: 20/04/2010

Amministratore Unico e
Legale Rappresentante
Claudio Brizzi
1 Wichtige Sicherheitshinweise

Der Thyristorsteller ist integraler Teil einer industriellen Anlage. Wenn die Versorgungsspannung eingeschaltet ist, sind im/am Gerät gefährliche Spannungen.
- Entfernen Sie dann niemals die Kunststoffabdeckung.
- Verwenden Sie dieses Gerät nicht in Luft- und Raumfahrt, sowie in nuklearen Anlagen.

Der Nennstrom ist für eine Temperatur von 40°C angegeben
- Der Thyristorsteller muss immer vertikal montiert werden. Oben und unten dürfen keine Abdeckungen montiert werden um eine geeignete Kühlung zu garantieren.
- Die heiße Abluft sollte oberhalb liegende Geräte nicht beeinflussen.
- Bei Dicht an Dicht Montage muss ein Seitenabstand von 15mm eingehalten werden.

Eine geeignete Komponente muss sicherstellen, dass der Thyristorsteller sicher elektrisch vom Netz getrennt werden kann, um ein sicheres Arbeiten am Gerät von qualifiziertem Personal zu ermöglichen.

Schutzart (Protection, Protezione)

Erdung (Terre, Messa a terra)

Hilfsversorgung (Alimentation électronique, Alimentazione elettronica)

Gefahr von elektrischem Schock (Risque de choque électrique, Rischi di scosse elettriche)
Wenn der Thyristorsteller an die Versorgung anschlossen war und ausgeschaltet ist, überprüfen Sie, ob das Gerät vollständig vom Netz getrennt ist und warten Sie mindestens eine Minute damit sich interne Kondensatoren entladen können, bevor sie am Gerät hantieren.
Beachten Sie weiterhin dass:
- Arbeiten am Gerät nur von autorisiertem und geschultem Personal erfolgen dürfen.
- Autorisiertes Personal vor dem Hantieren diese Bedienungsanleitung gelesen hat.
- Nicht autorisiertes Personal nicht an diesem Gerät hantiert und darauf Zugriff hat.
Wichtige Warnhinweise (Attention, Avvertenze importanti)

Während des Betriebes an Spannung müssen lokale Vorschriften in Bezug auf elektrische Vorschriften strikt eingehalten werden:

- Bestehende Sicherheitsvorschriften beachten.
- Komponenten nicht verbiegen oder modifizieren um die Isolationsabstände zu erhalten.
- Schützen Sie das Gerät vor hohen Temperaturen, Feuchtigkeit und Vibrationen.
- Keine Komponenten berühren um Beschädigung durch statische Entladung zu verhindern.
- Stellen Sie sicher, dass das Gerät für Lastspannung und Laststrom richtig ausgewählt wurde.
- Bei Messungen am Gerät nehmen Sie Ringe, Schmuck und Ketten von Fingern und Hand.
- Autorisiertes Personal muss bei Arbeiten am Gerät unter Spannung auf Isolierplatten stehen.

Diese Liste enthält nicht die komplette Auflistung aller Sicherheitsvorschriften, beachten Sie zusätzlich alle lokalen und internationalen Vorschriften.

EMC Elektromagnetische Verträglichkeit (Compatibilità électromagnétique, Compatibilità elettromagnetica)

Unsere Geräte besitzen eine hohe Immunität gegen elektromagnetische Störungen, wenn die im Handbuch beschriebenen Anweisungen eingehalten werden. Trotzdem empfehlen wir für induktive Lasten wie z.B. Schützspulen, parallele Filter anzuwenden.

Emissionen (Emission, Emissioni)

2 Anmerkungen

WARNUNG: Dieses Symbol zeigt bei allen beschriebenen Vorgängen an, dass eine Fehlbedienung zu Personenschaden oder Tod führen kann.

ACHTUNG: Dieses Symbol zeigt bei allen beschriebenen Vorgängen an, dass eine Fehlbedienung oder falsche Handhabung den Thyristorsteller beschädigen kann.

CD Automation behält sich das Recht vor, Änderungen am Produkt und an diesem Handbuch ohne vorherige Ankündigungen durchzuführen.
3 Einführung

4 Vorteile gegenüber analogen Thyristorstellern
Die Software ist kostenlos und auf unserer Homepage www.cdautomation.at oder www.cdautomation.com für Sie verfügbar.

Wenn der Bestellcode des Thyristorstellers mit Ihrer Bestellung übereinstimmt, dann ist der Thyristorsteller fertig konfiguriert, getestet und bereit zu Ihrer Verwendung.

Sie benötigen die Software dann nur dazu, um Änderungen gegenüber der Bestellung durchzuführen. Wir empfehlen daher vor einer Änderung das Gerät im Modus „Test Unit“ zu überprüfen.

Für die Installation der Software starten Sie bitte das Programm und folgen Sie den Anweisungen.

Starten Sie die CDA Software und stellen sie die Baudrate des PCs auf Baudrate = 19200 (default) und die Thyristoradresse auf 1 (default=1).

Um den Thyristorsteller mit dem PC (USB-Port) zu verbinden benötigen Sie unseren USB/TTL Konverter.

Der USB/TTL Konverter benötigt einen Treiber (Software), welcher auf www.cdautomation.com oder www.cdautomation.at verfügbar ist.

Das komplette Konfigurationsset besteht aus

- USB/TTL Konverter
- Zwei Kabel
- CDA Thyristor Konfigurator Software
- USB Treiber

und ist als Option separat zu bestellen. **Bestellkodierung: CCR**

6 Schnellstart

Achtung: Diese Einstellungen dürfen nur von qualifiziertem Personal durchgeführt werden!

Wenn der Bestellkode des REVO CL mit Ihren Anforderungen übereinstimmt, dann wurde er bereits in der Fabrik eingestellt und mit dieser Konfiguration getestet. Sie müssen dann nur mehr wenige Schritte bei der Inbetriebnahme machen:

1. Überprüfen Sie die REVO CL Dimensionierung damit wie folgt übereinstimmt:
 - Der Laststrom gleich oder kleiner ist als der MAX Strom des REVO CL ist.
 - Die Lastspannung gleich oder kleiner der MAX Spannung des REVO CL ist.

2. Überprüfen Sie die Installation

3. Überprüfen Sie die Anschlüsse entsprechend dem Anschlussdiagramm:
 - Alle Steuersignale müssen entsprechend den Anweisungen in diesem Handbuch angeschlossen sein.
 - Überprüfen Sie, dass kein Kurzschluss an der Last oder Lastverkabelung ist.

Versorgen Sie die Steuerelektronik mit der Hilfsversorgung
Stellen Sie die richtige Lastspannung im Parameter U_{oP} und den richtigen Laststrom im Parameter R_{Lo} ein. Das kann über die Tastatur oder CDA Software erfolgen.

U_{oP} **Betriebsspannung** V R/W

Funktion: Definieren sie die aktuelle Betriebsspannung. Dieser Wert ist wichtig um die richtige Messung und Anzeige der Leistung in den Maßeinheiten zu erhalten.

Min/Max: 24 ÷ 1000V
Standard: 230V

R_{Lo} **Nominaler Last-/Heizleiterstrom** A R/W

Function: It’s necessary to specify the load current value at nominal voltage. This current and voltage value are necessary to be able to read the power in engineering units

Min/Max: 1 ÷ 700 Ampere (für Geräte bis 700A)
Standard: Nominaler REVO CL Nennstrom wenn nicht anders bestellt.

Wenn der REVO CL Bestellkode nicht Ihren Anforderungen entspricht, benutzen Sie die CDA Konfigurations-Software. Nach dem Starten aktivieren Sie „Test Unit“ um die aktuellen Einstellungen zu erhalten und Sie danach anzupassen, oder benutzen Sie die Tastatur und das Handbuch zur Anpassung der Geräte Parameter.
7 Schaltungen und Dimensionierung

7.1 1PH Schaltung mit Widerstandslast

\[I = \frac{P}{V} \]

\(V \) = Nennspannung zwischen Phase-Phase/Phase-N
\(I \) = Nominaler Laststrom
\(P \) = Nominale Leistung der Last

7.2 1PH Schaltung mit induktiver Last

\[I = \frac{P}{V \cos \varphi} \]

\(V \) = Nennspannung zwischen Phase-Phase/Phase-N
\(I \) = Nominaler Laststrom
\(P \) = Nominale Leistung der Last

7.3 3-ph offene Dreieckschaltung (6-L) mit Widerstandslast (3 X REVO CL)

\[I = \frac{P}{3V} \]

\(V \) = Nennspannung zwischen Phase-Phase/Phase-N
\(I \) = Nominaler Laststrom
\(P \) = Nominale Leistung der Last
8 Überprüfung und Bestellkode

8.1 Identifikation des Gerätes

Achtung: Vor der Installation stellen Sie bitte sicher, dass das Gerät keine Beschädigungen aufweist. Wenn Sie Beschädigungen feststellen, kontaktieren Sie bitte Ihren Berater, bei dem Sie das Produkt gekauft haben.

Der Gerätekode am Aufkleber zeigt alle Details der Thyristorkonfiguration und befindet sich an den Stellen wie im folgenden Bild gezeigt. Überprüfen Sie vor der Inbetriebnahme, dass das Gerät mit Ihrer Bestellung übereinstimmt.
8.2 Bestellkodierung

<table>
<thead>
<tr>
<th>Modell</th>
<th>1 2 3 4 5 6 - 7 8 9 10 11 12 13 14 15 16(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R C L</td>
<td></td>
</tr>
</tbody>
</table>

Maximale Laststrom

<table>
<thead>
<tr>
<th>Laststrom</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>280A</td>
<td>2 8 0</td>
</tr>
<tr>
<td>400A</td>
<td>4 0 0</td>
</tr>
<tr>
<td>500A</td>
<td>5 0 0</td>
</tr>
<tr>
<td>600A</td>
<td>6 0 0</td>
</tr>
<tr>
<td>700A</td>
<td>7 0 0</td>
</tr>
</tbody>
</table>

Max. Betriebsspannung

<table>
<thead>
<tr>
<th>Spannung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>480V</td>
<td>4</td>
</tr>
<tr>
<td>600V</td>
<td>6</td>
</tr>
<tr>
<td>690V (2)</td>
<td>7</td>
</tr>
</tbody>
</table>

Hilfsversorgung (3)

<table>
<thead>
<tr>
<th>Spannung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>90:130V</td>
<td>1</td>
</tr>
<tr>
<td>170:265V</td>
<td>2</td>
</tr>
<tr>
<td>230:345V</td>
<td>3</td>
</tr>
<tr>
<td>300:330V</td>
<td>5</td>
</tr>
<tr>
<td>510:690V</td>
<td>6</td>
</tr>
<tr>
<td>600:760V</td>
<td>7</td>
</tr>
</tbody>
</table>

Eingang

<table>
<thead>
<tr>
<th>Eingang</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10V DC</td>
<td>V</td>
</tr>
<tr>
<td>4-20 mA</td>
<td>A</td>
</tr>
<tr>
<td>10k Potentiometer</td>
<td>K</td>
</tr>
<tr>
<td>RS485 (Schnittstelle digital)</td>
<td>R</td>
</tr>
<tr>
<td>SSR</td>
<td>S</td>
</tr>
</tbody>
</table>

Betriebsart

<table>
<thead>
<tr>
<th>Betriebsart</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>P</td>
</tr>
<tr>
<td>PA+S</td>
<td>E</td>
</tr>
<tr>
<td>DT</td>
<td>D</td>
</tr>
</tbody>
</table>

Rückführung

<table>
<thead>
<tr>
<th>Rückführung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine - „open Loop“</td>
<td>0</td>
</tr>
<tr>
<td>V Spannung (RMS)</td>
<td>U</td>
</tr>
<tr>
<td>VxI Leistung (RMS)</td>
<td>W</td>
</tr>
<tr>
<td>V² Spannung eff</td>
<td>Q</td>
</tr>
<tr>
<td>I Strom (RMS)</td>
<td>I</td>
</tr>
</tbody>
</table>

Option

<table>
<thead>
<tr>
<th>Option</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>int. Sicherung + CT</td>
<td>Y</td>
</tr>
<tr>
<td>int. Sicherung + CT + HB</td>
<td>H</td>
</tr>
</tbody>
</table>

Lüfter Spannung

<table>
<thead>
<tr>
<th>Lüfter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lüfter 110V</td>
<td>1</td>
</tr>
<tr>
<td>Lüfter 230V (Standard)</td>
<td>2</td>
</tr>
</tbody>
</table>

UL Zertifikat

<table>
<thead>
<tr>
<th>Zertifikat</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nein nur CE</td>
<td>0</td>
</tr>
<tr>
<td>cUL us (in Vorbereitung)</td>
<td>L</td>
</tr>
</tbody>
</table>

Handbuch

<table>
<thead>
<tr>
<th>Handbuch</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keines</td>
<td>0</td>
</tr>
<tr>
<td>Italienisch</td>
<td>1</td>
</tr>
<tr>
<td>Englisch</td>
<td>2</td>
</tr>
<tr>
<td>Deutsch</td>
<td>3</td>
</tr>
<tr>
<td>Französisch</td>
<td>4</td>
</tr>
</tbody>
</table>

Version

<table>
<thead>
<tr>
<th>Version</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard mit Sicherung</td>
<td>1</td>
</tr>
</tbody>
</table>

LEGENDE:
CT = Stromwandler
HB = Heizleiterüberwachung
1) Nach der 16 Stelle geben Sie den gewünschten Laststrom und Lastspannung an z.B. (60A – 400V)
2) ab 400A Version
3) Die Lastspannung muss innerhalb des Hilfsspannungsbereichs sein.
9 Technische Daten

9.1 Allgemeines:

<table>
<thead>
<tr>
<th>Material von Abdeckung und Sockel:</th>
<th>PolymericV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendung Kategorie</td>
<td>AC-51 AC-55a AC-55b AC-56A</td>
</tr>
<tr>
<td>Schutzart (IP)</td>
<td>20</td>
</tr>
<tr>
<td>Anschlussart</td>
<td>Einphasen Last (L-N, L-L)</td>
</tr>
</tbody>
</table>

Hilfsversorgung:	90:130V (10 VA Max)
	170:265V (10 VA Max)
	230:345V (10 VA Max)
	300:530V (10 VA Max)
	510:690V (10 VA Max)
	600:760V (10 VA Max)

| Relaisausgang für HB Alarm (Option) | 0.5A @ 125VAC |

9.2 Eingang:

Logik Eingang SSR:	4 ÷ 30Vdc 5mA Max (EIN ≥ 4Vdc AUS < 1Vdc)
Analogeingang	0 ÷ 10Vdc Impedanz 15 kΩ
Analogeingang	4 ÷ 20mA Impedanz 100 Ω
Potentiometer	10 kΩ min.
Digitaleingang	4 ÷ 24Vdc 5mA Max (EIN ≥ 4Vdc AUS < 1Vdc)

9.3 Ausgangsdaten (Leistungshalbleiter):

<table>
<thead>
<tr>
<th>Strom (A)</th>
<th>Spannungs-Bereich (Ue)</th>
<th>Spitzensperr-Spannung (Uimp)</th>
<th>Haltestrom (mAeff)</th>
<th>Spitzenstrom (10msec. (A))</th>
<th>Leckstrom (mAeff)</th>
<th>Ist Wert max.</th>
<th>Frequenz-Bereich (Hz)</th>
<th>Verlust-Leistung (W)</th>
<th>Isolations-Spannung (Ui)</th>
</tr>
</thead>
<tbody>
<tr>
<td>280</td>
<td>24÷600</td>
<td>1400</td>
<td>1600</td>
<td>200</td>
<td>7000</td>
<td>15</td>
<td>236000</td>
<td>47÷70</td>
<td>280</td>
</tr>
<tr>
<td>400</td>
<td>24÷600</td>
<td>1200</td>
<td>1600</td>
<td>200</td>
<td>7800</td>
<td>15</td>
<td>300000</td>
<td>47÷70</td>
<td>397</td>
</tr>
<tr>
<td>500</td>
<td>24÷600</td>
<td>1200</td>
<td>1600</td>
<td>200</td>
<td>8000</td>
<td>15</td>
<td>306000</td>
<td>47÷70</td>
<td>530</td>
</tr>
<tr>
<td>600</td>
<td>24÷600</td>
<td>1200</td>
<td>1600</td>
<td>1000</td>
<td>17800</td>
<td>15</td>
<td>1027000</td>
<td>47÷70</td>
<td>589</td>
</tr>
<tr>
<td>700</td>
<td>24÷600</td>
<td>1200</td>
<td>1600</td>
<td>1000</td>
<td>17800</td>
<td>15</td>
<td>1027000</td>
<td>47÷70</td>
<td>712</td>
</tr>
</tbody>
</table>

9.4 Lüfter Kenndaten

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>Anzahl Lüfter</th>
<th>Anzahl Lüfter</th>
</tr>
</thead>
<tbody>
<tr>
<td>S9 280A</td>
<td>Ein Lüfter - 17W</td>
<td>Ein Lüfter - 17W</td>
</tr>
<tr>
<td>S12 400A, 500A, 600A</td>
<td>Ein Lüfter - 17W</td>
<td>Zwei Lüfter - 34W</td>
</tr>
<tr>
<td>S12 700A</td>
<td>Zwei Lüfter - 34W</td>
<td>Zwei Lüfter - 34W</td>
</tr>
</tbody>
</table>
9.5 Umgebungs- und Arbeitsbedingungen

<table>
<thead>
<tr>
<th>Bedingung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitstemperatur</td>
<td>0-40°C @ Nennstrom. Über 40°C sehen Sie das</td>
</tr>
<tr>
<td></td>
<td>Derating Diagramm (Abschnitt 9.6).</td>
</tr>
<tr>
<td>Lagertemperatur</td>
<td>-25°C bis 70°C</td>
</tr>
<tr>
<td>Installationsort</td>
<td>Nicht installieren an Orten mit: direkter</td>
</tr>
<tr>
<td></td>
<td>Sonneneinstrahlung, leitfähigem Staub, korrosivem</td>
</tr>
<tr>
<td></td>
<td>Gas, Vibrationen, Wasser und in salzhaltiger</td>
</tr>
<tr>
<td></td>
<td>Umgebung.</td>
</tr>
<tr>
<td>Seehöhe</td>
<td>Bis 1000m Seehöhe ohne Reduktion. Über 1000m</td>
</tr>
<tr>
<td></td>
<td>Seehöhe reduzieren Sie den max. Laststrom um 2%</td>
</tr>
<tr>
<td></td>
<td>für jeweils 100m über 1000m.</td>
</tr>
<tr>
<td>Feuchtigkeit</td>
<td>Von 5 bis 95% ohne Kondensation und Eis</td>
</tr>
<tr>
<td>Verschmutzungsgrad</td>
<td>Bis 2nd Level ref. IEC 60947-1 6.1.3.2</td>
</tr>
</tbody>
</table>

9.6 Derating Kurve

10 Installation

- Überprüfen Sie, ob das Gerät die Spezifikationen aufweist, die Sie bestellt haben.
- Der Thyristorsteller muss immer vertikal montiert werden, um die Kühlung zu gewährleisten.
- Halten Sie die Mindestabstände ein, wie auf nebenstehender Zeichnung ersichtlich ist.
- Für manche Installationen kann es notwendig sein einen Lüfter zu installieren, um eine ausreichende Kühlung zu gewährleisten.
10.1 Abmessung und Gewicht

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>B(mm)</th>
<th>H(mm)</th>
<th>T(mm)</th>
<th>Gewicht (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>280A (S9)</td>
<td>120</td>
<td>350</td>
<td>230</td>
<td>5,5</td>
</tr>
<tr>
<td>400A (S12)</td>
<td>137</td>
<td>520</td>
<td>270</td>
<td>15</td>
</tr>
<tr>
<td>500A (S12)</td>
<td>137</td>
<td>520</td>
<td>270</td>
<td>15</td>
</tr>
<tr>
<td>600A (S12)</td>
<td>137</td>
<td>520</td>
<td>270</td>
<td>15</td>
</tr>
<tr>
<td>700A (S12)</td>
<td>137</td>
<td>520</td>
<td>270</td>
<td>15</td>
</tr>
</tbody>
</table>
10.2 Montagebohrungen

<table>
<thead>
<tr>
<th>Baugröße</th>
<th>A (mm)</th>
<th>B (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>280A (S9)</td>
<td>95</td>
<td>335</td>
</tr>
<tr>
<td>400A (S12)</td>
<td>97</td>
<td>490</td>
</tr>
<tr>
<td>500A (S12)</td>
<td>97</td>
<td>490</td>
</tr>
<tr>
<td>600A (S12)</td>
<td>97</td>
<td>490</td>
</tr>
<tr>
<td>700A (S12)</td>
<td>97</td>
<td>490</td>
</tr>
</tbody>
</table>
11 Verdrahtungs-Anweisung

Um den Thyristorsteller vor Interferenzen nahegelegener Geräte oder der Netzversorgung zu schützen, beachten Sie folgende Hinweise und allgemeine Richtlinien für elektrische Installationen:

- Schützspulen und andere induktive Lasten müssen mit geeigneten RC Filtern ausgerüstet sein.
- Verwenden Sie geschirmte Leitungen für alle Ein- und Ausgangssignale
- Steuerleitungen dürfen nicht neben und parallel zu den Leistungskabeln verlegt sein.
- Lokale Vorschriften für elektrische Installationen sind bedingungslos einzuhalten.
- Verwenden Sie nur Cu-Leitungen, welche für den Betrieb bei 75°C ausgelegt sind.

11.1 Öffnen der Abdeckung

Anleitung zum Öffnen der Abdeckung bei Geräten der Baugröße S9

Anleitung zum Öffnen der Abdeckung bei Geräten der Baugröße S12
11.2 Klemmenanordnung
11.3 Leistungsklemmen

Warnung: Bevor sie mit Verkabelungstätigkeiten am Gerät beginnen, stellen Sie sicher, dass alle Leistung- und Steuerleitungen von Netzspannung und anderen spannungsführenden Quellen isoliert oder getrennt sind.

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Beschreibung/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Versorgung Phase 1</td>
</tr>
<tr>
<td>T1</td>
<td>Lastausgang Phase 1</td>
</tr>
</tbody>
</table>

REVO CL 1PH 280A (S9)

![REVO CL 1PH 280A (S9) Diagram]

REVO CL 400A÷700A (S12)

![REVO CL 400A÷700A (S12) Diagram]
11.4 Drehmomente für Leistungsklemmen (empfohlen)

<table>
<thead>
<tr>
<th>Laststrom</th>
<th>Klemmentype</th>
<th>Drehmoment Lb-in (N-m)</th>
<th>Drahtgröße AWG / kcmil</th>
<th>Drahtenden</th>
</tr>
</thead>
<tbody>
<tr>
<td>280 A</td>
<td>Terminal Block M8</td>
<td>265 (30.0)</td>
<td>1/0</td>
<td>Cu-Draht massiv (Solid), verseilt</td>
</tr>
<tr>
<td>400 A</td>
<td>Stromschiene mit M10 Schraube</td>
<td>505 (57.0)</td>
<td>2x3/0 600</td>
<td>UL Listed (ZMVV) Cu-Crimp-Kabelschuh</td>
</tr>
<tr>
<td>500 A</td>
<td>Stromschiene mit M10 Schraube</td>
<td>505 (57.0)</td>
<td></td>
<td>Stromschiene 60x4mm</td>
</tr>
<tr>
<td>600 A</td>
<td>Stromschiene mit M10 Schraube</td>
<td>505 (57.0)</td>
<td></td>
<td>Stromschiene 60x5mm</td>
</tr>
<tr>
<td>700 A</td>
<td>Stromschiene mit M10 Schraube</td>
<td>505 (57.0)</td>
<td></td>
<td>Stromschiene 60x6mm</td>
</tr>
</tbody>
</table>

11.5 Dimensionierung Leistungsanschluss (empfohlen)

<table>
<thead>
<tr>
<th>Strom</th>
<th>Anspeisung</th>
<th>Lastabgang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kabel mm²</td>
<td>AWG</td>
</tr>
<tr>
<td>280A (S9)</td>
<td>95</td>
<td>3/0</td>
</tr>
<tr>
<td>400A (S12)</td>
<td>2 x 95</td>
<td>2 x 3/0</td>
</tr>
<tr>
<td>500A (S12)</td>
<td>Stromschiene</td>
<td>60 x 4 mm</td>
</tr>
<tr>
<td>600A (S12)</td>
<td>Stromschiene</td>
<td>60 x 5 mm</td>
</tr>
<tr>
<td>700A (S12)</td>
<td>Stromschiene</td>
<td>60 x 6 mm</td>
</tr>
</tbody>
</table>
11.6 Dimensionierung Erdanschluss und Steuersignale (empfohlen)

<table>
<thead>
<tr>
<th>Strom</th>
<th>Erdanschluss</th>
<th>Steuerleitung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kabel</td>
<td>Schraube</td>
</tr>
<tr>
<td></td>
<td>mm²</td>
<td>AWG</td>
</tr>
<tr>
<td>280A (S9)</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>400A (S12)</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>500A (S12)</td>
<td>70</td>
<td>1/0</td>
</tr>
<tr>
<td>600A (S12)</td>
<td>70</td>
<td>1/0</td>
</tr>
<tr>
<td>700A (S12)</td>
<td>70</td>
<td>1/0</td>
</tr>
</tbody>
</table>

11.7 Steuerklemmen bei Geräten Baugrösse S9 (280A)

Warnung: Bevor sie mit Verkabelungstätigkeiten am Gerät beginnen, stellen Sie sicher, dass alle Leistung- und Steuerleitungen von Netzspannung und anderen spannungsführenden Quellen isoliert oder getrennt sind.

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Beschreibung/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hilfsversorgung/AUX L1</td>
</tr>
<tr>
<td>2</td>
<td>Kein Anschluss – nicht verwenden!</td>
</tr>
<tr>
<td>3</td>
<td>Hilfsversorgung/AUX L2/N</td>
</tr>
<tr>
<td>4</td>
<td>Kein Anschluss – nicht verwenden!</td>
</tr>
<tr>
<td>5</td>
<td>Lüfterversorgung 230VAC (optional 110V)</td>
</tr>
<tr>
<td>6</td>
<td>Lüfterversorgung 230VAC (optional 110V)</td>
</tr>
<tr>
<td>7</td>
<td>Kein Anschluss – nicht verwenden!</td>
</tr>
<tr>
<td>8</td>
<td>COM I - Common Digital Input</td>
</tr>
<tr>
<td>9</td>
<td>Sollwerteingang (+) SSR, 0÷10V,4÷20mA,POT</td>
</tr>
<tr>
<td>10</td>
<td>Sollwerteingang (-) SSR, 0÷10V,4÷20mA,POT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klemme</th>
<th>Beschreibung/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>GND (0V analog Masse)</td>
</tr>
<tr>
<td>12</td>
<td>+10V Ausgang, stabilisiert 1mA max.</td>
</tr>
<tr>
<td>13</td>
<td>RS485 B</td>
</tr>
<tr>
<td>14</td>
<td>RS485 A</td>
</tr>
<tr>
<td>15</td>
<td>Dig. Eingang 1 (konfigurierbar)</td>
</tr>
<tr>
<td>16</td>
<td>Freigabe/Enable => dig. Eingang 2 (konfigurierbar)</td>
</tr>
<tr>
<td>17</td>
<td>Analogeingang (+) für ext. Strombegrenzung (CL)</td>
</tr>
<tr>
<td>18</td>
<td>NC Alarmrelais (Öffner)</td>
</tr>
<tr>
<td>19</td>
<td>C Wurzel Alarmrelais</td>
</tr>
<tr>
<td>20</td>
<td>NO Alarmrelais (Schließer)</td>
</tr>
</tbody>
</table>
11.8 Anschlussdiagramm für Gerät Baugröße S9 (280A)

Achtung: Diese Arbeiten am Gerät dürfen nur von qualifiziertem Personal durchgeführt werden.

ANMERKUNG:

*¹ Die Installation muss durch eine Leistungsschalter oder Sicherungen geschützt sein.
**Das I²t von Halbleitersicherungen muss 20% kleiner als das Halbleiter I²t sein.
**Nach UL gelten Halbleitersicherungen nur als Schutz für den Halbleiter und nicht für die Installation.
**Sie sind nicht zum Schutz des Leistungsabganges zugelassen!*

*² Die Hilfsversorgung muss synchron mit der Lastspannung sein. Ist die bestellte Hilfsversorgung unterschiedlich zur Lastspannung verwenden Sie einen Trafo wie gezeichnet.
11.9 Anschlussbild

Achtung: Diese Arbeiten am Gerät dürfen nur von qualifiziertem Personal durchgeführt werden.

![Diagram](image)

* Die gesamte Installation muss durch eine Leistungsschalter oder Sicherungen geschützt sein. Das I^2t von Halbleitersicherungen muss 20% kleiner als das Halbleiter I^2t. Nach UL gelten Halbleitersicherungen nur als Schutz für den Halbleiter und nicht für die Installation.

X = Kein Anschluss – nicht verwenden!
11.10 Steuerklemmen bei Geräten Baugröße S12 (400-700A)

Warnung: Bevor sie mit Verkabelungstätigkeiten am Gerät beginnen, stellen Sie sicher, dass alle Leistung- und Steuerleitungen von Netzspannung und anderen spannungführenden Quellen isoliert oder getrennt sind.

<table>
<thead>
<tr>
<th>Klemmen</th>
<th>Beschreibung/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NO Alarmrelais (Schließer)</td>
</tr>
<tr>
<td>2</td>
<td>Wurzel Alarmrelais</td>
</tr>
<tr>
<td>3</td>
<td>NC Alarmrelais (Öffner)</td>
</tr>
<tr>
<td>4</td>
<td>Analogeingang (+) für ext. Strombegrenzung (CL)</td>
</tr>
<tr>
<td>5</td>
<td>DI 2 Freigabe/Enable => dig. Eingang 2 (konfigurierbar)</td>
</tr>
<tr>
<td>6</td>
<td>DI 1 Dig. Eingang 1 (konfigurierbar)</td>
</tr>
<tr>
<td>7</td>
<td>RS485 A</td>
</tr>
<tr>
<td>8</td>
<td>RS485 B</td>
</tr>
<tr>
<td>9</td>
<td>+10V Ausgang stabilisiert 1mA max.</td>
</tr>
<tr>
<td>10</td>
<td>GND (0V analog Masse)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Klemmen</th>
<th>Beschreibung/Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Sollwerteingang (-) SSR, 0÷10V,4÷20mA,POT</td>
</tr>
<tr>
<td>12</td>
<td>Sollwerteingang (+) SSR, 0÷10V,4÷20mA,POT</td>
</tr>
<tr>
<td>13</td>
<td>COM digital Eingang</td>
</tr>
<tr>
<td>14</td>
<td>Kein Anschluss – nicht verwenden!</td>
</tr>
<tr>
<td>15</td>
<td>Lüfterversorgung 230VAC (optional 110V)</td>
</tr>
<tr>
<td>16</td>
<td>Lüfterversorgung 230VAC (optional 110V)</td>
</tr>
<tr>
<td>17</td>
<td>Kein Anschluss – nicht verwenden!</td>
</tr>
<tr>
<td>18</td>
<td>Hilfsversorgung/AUX (siehe Bestellcode für Spannungswert)</td>
</tr>
<tr>
<td>19</td>
<td>Kein Anschluss – nicht verwenden!</td>
</tr>
<tr>
<td>20</td>
<td>Hilfsversorgung/AUX (siehe Bestellcode für Spannungswert)</td>
</tr>
</tbody>
</table>
11.11 Anschlussbild für Geräte Baugrösse S12 (400-700A)

Achtung: Diese Arbeiten dürfen nur von qualifiziertem Personal durchgeführt werden.

ACHTUNG:
*1 Die Installation muss durch einen Lastschutz oder Sicherungstrenner geschützt werden. Das I2t der superflinken Sicherung muss 20% kleiner als das des Thyristors sein. Superflinke Sicherungen sind in UL Anwendungen nur als zusätzlicher Halbleiterschutz vorgesehen. Sie sind nicht als Leitungs-/Last-Schutz zugelassen.
• *2 Die Hilfsversorgung muss mit der Lastspannung synchron sein!
 Wenn sich die Hilfsversorgung von der Versorgungsspannung unterscheidet (siehe Typenschild), verwenden Sie einen geeigneten Steuertransformator um eine Anpassung durchzuführen.
11.12 Anschlussdiagramm für Geräte der Baugröße S12 (400-700A)

Achtung: Hilfsversorgung und Lastspannung müssen synchron sein.

X = Kein Anschluss – nicht verwenden!

* Die gesamte Installation muss durch eine Leistungsschalter oder Sicherungen geschützt sein. Das I^2t von Halbleitersicherungen muss 20% kleiner als das Halbleiter I^2t. Nach UL gelten Halbleitersicherungen nur als Schutz für den Halbleiter und nicht für die Installation.
12 Bedien- und Anzeigeeinheit

Das Bedienerpaneel ist an der Vorderseite des Thyristor-Steckers und ermöglicht die Anzeige von Alarmen, Eingangs- und Ausgangsgrößen sowie die komplettete Parametrierung.

Die Funktion der Tasten ist wie folgt beschrieben:

- Die AUF/AB-Tasten ermöglichen das Navigieren in den Listen und die Veränderung der Parameter im Eingabemodus.
- Die L/R-Taste schaltet zwischen digitalem und analogem Sollwert um. Die Auswahl wird durch blinken der LED1 angezeigt.
- Die F + L/R-Tasten gleichzeitig gedrückt und gehalten, wechseln zur Menü-Auswahl.

Die Bedienstruktur ist in 3 Menügruppen unterteilt, welche nur mittels Sicherheitscode aktiviert werden können. Dazu muss im Parameter PASS der richtige Code eingegeben werden:

- Bediener Menü (PASS = 2) enthält die Leseparameter welche Auskunft über Status und Prozessparameter geben, sowie die Basisparameter für Quick-Start und Sollwert.
- Hardware Menü (PASS = 5) enthält die Konfigurations-Parameter für alle Ein- und Ausgänge sowie die serielle Schnittstelle.
- Parameter Menü (PASS = 10) enthält alle Konfigurations-Parameter für Betriebsart, Rückführung, Begrenzungen, u.s.w.
12.1 Die Parameterlisten

Bediener Menü (OPer)

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Symbol</th>
<th>Lage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stelle dig. SP</td>
<td>▲ ▲</td>
<td>L/R SP</td>
</tr>
<tr>
<td>Zeige an. SP</td>
<td>▲ ▲</td>
<td></td>
</tr>
<tr>
<td>Lese Ausgangsleistung</td>
<td>▲ ▲</td>
<td></td>
</tr>
<tr>
<td>Stelle Strombegrenzung</td>
<td>▲ ▲</td>
<td></td>
</tr>
<tr>
<td>Lese Ausgangstrom</td>
<td>▲ ▲</td>
<td></td>
</tr>
<tr>
<td>Lese Ausgangsspannung</td>
<td>▲ ▲</td>
<td></td>
</tr>
<tr>
<td>Stelle Lastspannung</td>
<td>▲ ▲</td>
<td></td>
</tr>
<tr>
<td>Stelle Laststrom</td>
<td>▲ ▲</td>
<td></td>
</tr>
<tr>
<td>Zustand Digitaleingang 1</td>
<td>▲ ▲</td>
<td>d 1</td>
</tr>
<tr>
<td>Zustand Digitaleingang 2</td>
<td>▲ ▲</td>
<td>d 2</td>
</tr>
<tr>
<td>Zeige Analog/Digital Sollwert</td>
<td>▲ ▲</td>
<td>▲ ▲</td>
</tr>
<tr>
<td>Zeige Freigabe</td>
<td>▲ ▲</td>
<td></td>
</tr>
<tr>
<td>L/R + F drücken um aus dem Menü zu gehen.</td>
<td>▲ ▲</td>
<td></td>
</tr>
</tbody>
</table>

Parameter Menü (Set)

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Symbol</th>
<th>Lage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stelle Betriebsart</td>
<td>▲ ▲</td>
<td>F r</td>
</tr>
<tr>
<td>Stelle Rampenzeit, nur für PR</td>
<td>▲ ▲</td>
<td>rP.u</td>
</tr>
<tr>
<td>Stelle HB Empfindlichkeit</td>
<td>▲ ▲</td>
<td>Hb.s</td>
</tr>
<tr>
<td>Stelle HB Verzögerung</td>
<td>▲ ▲</td>
<td>Hb.d</td>
</tr>
<tr>
<td>Stelle Rückführung</td>
<td>▲ ▲</td>
<td>FEBd</td>
</tr>
<tr>
<td>Stelle Zyklenzeit BF, nur für bFbf</td>
<td>▲ ▲</td>
<td>bF.b</td>
</tr>
<tr>
<td>Stelle Verzögerung DT nur für bFbf</td>
<td>▲ ▲</td>
<td></td>
</tr>
<tr>
<td>Stelle Prop. Band</td>
<td>▲ ▲</td>
<td>Pb</td>
</tr>
<tr>
<td>Stelle Integralzeit</td>
<td>▲ ▲</td>
<td>t</td>
</tr>
<tr>
<td>Stelle Anzeige-Parameter</td>
<td>▲ ▲</td>
<td>▲ ▲</td>
</tr>
<tr>
<td>nicht verfügbar</td>
<td>▲ ▲</td>
<td></td>
</tr>
</tbody>
</table>

Hardware Menü (Har)

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Symbol</th>
<th>Lage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stelle Analogeingang Signaltyp</td>
<td>▲ ▲</td>
<td></td>
</tr>
<tr>
<td>Justiere AI Min.</td>
<td>▲ ▲</td>
<td></td>
</tr>
<tr>
<td>Justiere AI Max.</td>
<td>▲ ▲</td>
<td></td>
</tr>
<tr>
<td>Stelle D1 Funktion</td>
<td>▲ ▲</td>
<td>Cd 1</td>
</tr>
<tr>
<td>Stelle D1/2 Funktion</td>
<td>▲ ▲</td>
<td>Cd 2</td>
</tr>
<tr>
<td>Stelle DO (Relais) Funktion</td>
<td>▲ ▲</td>
<td>Cd 0</td>
</tr>
<tr>
<td>Stelle Baudrate</td>
<td>▲ ▲</td>
<td>bAud</td>
</tr>
<tr>
<td>Stelle Adresse</td>
<td>▲ ▲</td>
<td>Addr</td>
</tr>
<tr>
<td>Stelle Modus CL</td>
<td>▲ ▲</td>
<td>CL - 1</td>
</tr>
<tr>
<td>L/R + F drücken um aus dem Menü zu gehen.</td>
<td>▲ ▲</td>
<td>L/R F</td>
</tr>
</tbody>
</table>

L/R + F drücken um aus dem Menü zu gehen.
13 Eingangs-/Ausgangs-Signale

13.1 Digitale Eingänge

Der REVO CL Thyristorsteller verfügt über 2 opto-isolierte Digitaleingänge max. 24VDC (5mA). Die Eingänge müssen aktiv versorgt werden; über die interne Versorgung oder extern von einer SPS.

13.1.1 Start/Stop (Klemme 16 bei S9, Klemme 5 bei S12) dig. Eingang 2

Dieser Eingang ist der Start/Freigabe Befehl für den REVO CL. Wenn das aktive Signal von diesem Eingang weggenommen wird, stoppt der Ausgang unmittelbar. Dieser Eingang kann auch über Parameter \(\text{Cd} \) konfiguriert werden.

13.1.2 Konfigurierbarer Eingang (Klemme 15 bei S9, Klemme 6 bei S12) dig. Eingang 1

Dieser Eingang wird über \(\text{Cd} \) konfiguriert und ermöglicht folgenden Funktionen:

- Enable (Start/Stop):
 Ein inaktives Signal sperrt die Ausgangsfunktion.

- Rückführungsart:
 Wird der Eingang aktiviert, ändert sich der Feed-Back Modus vom eingestellten Verhalten in \(\text{FeeD} \) auf Feed-Back Spannung (V).

- Analog/Diszitaler Sollwert (Local/Remote):
 Wird der Eingang aktiviert, wechselt der SP vom analogen- auf den digitalen int. Sollwert \(\text{Sp} \).

- Change Firing type:
 Mit dieser Funktion, als du den Input aktivierst, ändert sich der Firing type in \(\text{Phase Angle PA} \).

13.1.3 Digitalausgang (Klemmen 18-19-20 bei S9, Klemmen 1-2-3 bei S12)

REVO CL verfügt über einen Relaisausgang an den Klemmen 18-19-20 (S9) bzw. 1-2-3 (S12) von Klemmenblock M1(Max 500mA, 125Vac). Die Funktion wird über den Parameter \(\text{Co} \) wie folgt definiert:

- HB und SC Alarm. (SC = Thyristorkurzschluss)
- Nur HB Alarm.
- Nur SC Alarm.

Alle obigen Kombinationen gibt es noch mit der zusätzlichen Funktion „Plus CL (Strombegrenzung)“.

13.2 Analogeingänge

13.2.1 Haupteingang (Klemmen 9 and 10 bei S9, Klemmen 11-12 bei S12)

REVO CL Thyristorsteller verfügt über einen Analogeingang (0÷10V, 0÷20mA, 4÷20mA), welcher als Hauptsollwert definiert ist.

Dieser Eingang wird immer dem Bestellkode entsprechend eingestellt, siehe das Typenschild. Der Eingang ist aber konfigurierbar als Strom oder Spannungseingang (z.B. 0÷10V to 0÷20mA, 4÷20mA).
14 Heizleiterbruch und Thyristorkurzschluss Alarm (HB)

Achtung: für eine einwandfreie Funktion muss die Last mindestens 8 Vollwellen (160ms) bestromt sein.

Die HB Schaltung bestimmt den Lastwiderstand über die internen Strom- und Spannungswandler (R=U/I). Der minimale Laststrom muss 10% des Wandlerstromes betragen. Bei kleineren Lastströmen ist eine korrekte Funktion nicht gewährleistet.

14.1 HB Kalibrierung

Diese Prozedur läuft wie folgt automatisch ab. Stellen Sie nur zuvor sicher dass die Parameter \(R_{Lo} \) und \(U_{oP} \) richtig eingestellt sind. Wenn sich der Lastwiderstand verringert (Empfindlichkeit 20%) dann wird der HB Alarm + LED HB aktiv und das Relais schaltet. Wenn der Steller auch ohne Stellsignal Strom leitet dann ist der Thyristor kurzgeschlossen und die LED SC + Relais werden aktiviert.

Sie können die Empfindlichkeit von 20% mit dem Parameter \(Hb.S \) im Bereich von 1 bis 100% Widerstandserhöhung verstellen. Dieser Parameter gibt die Widerstandsänderung an, bei welcher der Alarm auslöst.

Zusätzlich ist der Parameter \(Hb.d \) vorhanden um eine Zeitverzögerung für den HB Alarm zu ermöglichen, damit werden kurze Laständerungen (z.B. von Schleifringen) ausgeblendet/unterdrückt.

14.2 HB Alarmrelais (digitaler Ausgang)

REVO CL Thyristorsteller mit HB Option sind mit einem Alarmrelais ausgestattet, bei dem der Kontakt als NO Funktion konfiguriert ist:
- Im normalen Betrieb (ohne Alarm) mit aktiver Versorgung ist der Kontakt offen (Spule bestromt).
- Im Alarmzustand oder ohne Hilfsversorgung ist der Kontakt geschlossen (Spule stromlos).

Der Alarm kann aber auch wie folgt konfiguriert werden:
- HB und SC aktiviert den Alarm.
- Nur HB aktiviert den Alarm.
- Nur SC aktiviert den Alarm.
- Deaktiviere den Alarm.

- *Alle diese Kombinationen gibt es zusätzlich auch mit der Anzeige, dass die Strombegrenzung aktiv ist*
15 Betriebsart

Die richtige Auswahl der Betriebsart erlaubt die Optimierung des Thyristorstellers für die installierte Heizung. Normalerweise ist die Betriebsart bereits nach Ihren Bestellangaben eingestellt worden. Wie auch immer, wenn Sie eine Anpassung vornehmen müssen, können Sie das über die Programmiereinheit oder das Bedienfeld durchführen.

Achtung: Diese Änderung darf nur durch qualifiziertes Personal durchgeführt werden.

15.1 Phasenanschnitt PA

15.2 Soft Start mit PA (S+PA)

Das ist eine Zusatzfunktion zum PA Betrieb und wird zur Verhinderung von hohen Magnetisierungsströmen bei hoch induktiven Lasten oder zum sanften Aufheizen von Heizungen mit geringem Kaltwiderstand verwendet. Die Parameter sind:
Sollwertrampe AUF und AB : rP_u

Diagramm: VOLTAGE SUPPLY (V)

Diagramm: LOAD VOLTAGE (V)

Diagramm: OUTPUT VOLTAGE (V)

REVO-CL_280-700A_HB_AT_07_201009 Seite 32 von 52
15.3 Delayed Trigger mit Pulspaketen DT + BF

Bei induktiven Lasten wie z.B. Transformator erzeugt das Schalten im Nulldurchgang hohe Einschaltströme welche zu einem Sicherungsfall führen. Um das zu verhindern verwendet man einen verzögerten Trigger. Diese Zündverzögerung in der ersten Halbwelle des Pulspaketes zwischen 0-100° und eine Softstart Rampen verhindern die hohen Einschaltströme.

Ohne Delayed Trigger

Mit Delayed Trigger

Zur Erläuterung der Funktion haben wir die Ströme und Spannungen als Vektoren dargestellt. Die Rotation ist gegen den Uhrzeigersinn.

Ohne Delayed Trigger

Mit Delayed Trigger

Ohne Verzögerung schaltet das Gerät im Nulldurchgang, V1 ist Null (projiziert auf die X Achse) ein. Zu diesem Zeitpunkt ist der Momentanwert der Ströme i1, i2, i3 und dieser Zustand, generiert während der Magnetisierung transiente Überströme welche einen Sicherungsfall produzieren.

Mit Delayed Trigger zündet der Thyristor später so dass, der Momentanwert der Ströme, i1=0, i2 positiv und i3 negativ ist. Dadurch wird ein transienter Magetisierungsstrom verhindert und die Sicherungen sind nicht gefährdet. Der Verzögerungswinkel Alpha ist die Verzögerung um i1=0 zu erhalten und hängt vom Leistungsfaktor der Lastkombination ab. Für die meisten Anwendungen ist 80° der ideale Startwert.
Pulspaket Betrieb (BF)

Diese Betriebsart erzeugt ein Paket von Vollwellen Schwingungspaketen mit einer EIN Länge wählbar von 2 bis 255 Vollwellen, bei einem Eingangssignal von 50%.

Diese Betriebsart reduziert die elektromagnetischen leitungsgebundenen Störungen, weil der Thyristor immer im Nulldurchgang der Spannung ein und im Nulldurchgang des Stromes ausschaltet.

Folgendes Beispiel zeigt einen Zyklus mit \(b^F \cdot n = 4 \) Zyklen.
16 Wirkungsweise der Strombegrenzung

Die Strombegrenzung ist bei jeder Betriebsart des REVO CL verfügbar. Die Regelung des Zündwinkels verhindert das Ansteigen des RMS Laststromes über die eingestellte Grenze. Wenn die Stromgrenze erreicht wird, verringert sich der Zündwinkel so weit, dass die Spannung an der Last weiter reduziert wird um ein Übersteigen des Stromes zu verhindern.

16.1.1 Einstellung der Stromgrenze (Begrenzung)

Die Stromgrenze wird durch Analogeingang 2 (M1:8-6) oder im digitalen Modus mittels Parameter \mathcal{C}_L definiert. Um die Auswahl zwischen analog/digital zu machen definiere Parameter $\mathcal{C}_{L,\text{d}}$.

$$\mathcal{C}_{L,\text{a}} = \mathcal{C}_{L,\text{d}}$$ Strombegrenzung via internem digitalen Sollwert oder Schnittstelle

$$\mathcal{C}_{L,\text{a}} = \mathcal{C}_{L,\text{a}}$$ Strombegrenzung via externem analogen Sollwert

Technische Daten des Analogeingangs: Spannungsbereich: 0 – 10VDC; Impedanz: 10kΩ

Zur Einstellung gehen Sie wie folgt vor:

Achtung: Diese Änderung darf nur durch qualifiziertes Personal durchgeführt werden.

16.1.2 Einstellung online mit Last

- Hilfsversorgung einschalten und die Stromgrenze auf 0 (Null) stellen:
 - Im Analogmodus, reduzieren Sie das Eingangssignal auf den min. Wert (z.B. 0V für 0÷10VDC)
 - Im Digitalmodus, setze den Parameter $\mathcal{C}_L = 0$
- Lastspannung anlegen und Freigabe aktivieren.
- Sollwertvorgabe auf 100% stellen.
- Erhöhen Sie die Stromgrenze
 - im analogen Modus den Analogeingang
 - im digitalen Modus den Parameter \mathcal{C}_L
 bis der gewünschte Stromwert erreicht ist.

ACHTUNG: Wenn Sie den Strom mit einem Multimeter und Stromzange messen, beachten Sie, dass Sie ein Messgerät für RMS Messung mit einem CREST Faktor ≥ 4 verwenden oder verwenden Sie unsere CDA Software im Online Modus oder die Stromanzeige an der Front.
17 Rückführung

Normalerweise ist die Rückführung bereits nach Ihren Bestellangaben eingestellt worden, siehe Typenschild am Gerät. Wie auch immer, wenn Sie eine Anpassung vornehmen können Sie das über die Programmiersoftware oder das Bedienfeld durchführen.

Achtung: Diese Änderung darf nur durch qualifiziertes Personal durchgeführt werden.

Die Rückführungsart ist definiert durch den Parameter \textit{FEEd}.
Wenn der konfigurierbare Digitaleingang als Rückführung Auswahl definiert ist, wird beim Aktivieren immer der Spannungsmodus (\textit{V}) ausgewählt.

Folgende Rückführungsvarianten sind möglich:

- \textbf{V}= Spannungsrückführung.
 Das Eingangssignal ist proportional zur Lastspannung (RMS). Das bedeutet, dass das Eingangssignal der Spannungssollwert ist. Diese Betriebsart kompensiert Spannungsschwankungen der Versorgungsspannung.

- \textbf{W} = Leistungsrückführung.

- \textbf{I} = Strom Rückführung.
 Das Eingangssignal ist proportional zum Ausgangsstrom (RMS). Das bedeutet, dass das Eingangssignal der Stromsollwert ist und der Strom an der Last konstant bleibt, auch wenn sich der Lastwiderstand ändert.

- \textbf{V2} = U Quadrat Rückführung.
 Das Eingangssignal entspricht dem Quadrat der Ausgangsspannung. Das bedeutet, dass das Eingangssignal dem Leistungssollwert entspricht. Diese Annahme gilt allerdings nur für einen konstanten Lastwiderstand. (P = U²/R)

- \textbf{NO} = Keine Rückführung („open Loop“). Der Zündwinkel (\(\alpha\)) ist proportional dem Eingangssignal.
17.1 Hilfsversorgung

Warnung: Vor Arbeiten am Gerät stellen Sie sicher, dass alle Last- und Steuerleitungen spannungsfrei und vom Netz isoliert sind!

<table>
<thead>
<tr>
<th>Klemmen S9</th>
<th>Klemmen S12</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>Hilfsversorgung VAC (L1)</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>Nicht verwendet</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>Hilfsversorgung VAC (L2/Mp)</td>
</tr>
</tbody>
</table>

Sollten Sie die Spannung ändern müssen so löten Sie die richtigen Brücken wie nachfolgend gezeigt wird ein. Beachten Sie, dass für einige Spannungsbereiche ein anderer Steuertransformator benötigt wird.

![Transformator Type](image)

<table>
<thead>
<tr>
<th>Transformator Type</th>
<th>Link-Jumper JP1+JP2</th>
<th>Link-Jumper JP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR-605 120V</td>
<td>90:130V</td>
<td>-</td>
</tr>
<tr>
<td>TR-605 230V</td>
<td>170:265V</td>
<td>300:530V</td>
</tr>
<tr>
<td>TR-605 300V</td>
<td>230:345V</td>
<td>510:690V</td>
</tr>
</tbody>
</table>

Ist der geeignete Transformator nicht zur Verfügung, verwenden Sie einen externen Steuertransformator. Dieser muss primär Ihrer Lastspannung entsprechen und sekundär der gewählten Steuerspannung!
18 Analogeingang

Der REVO CL Thyristorsteller verfügt über zwei konfigurierbare Analogeingänge (0÷10V, 4÷20mA, u.s.w)
Der Haupteingang ist immer als Sollwert definiert und der zweite Eingang kann als Strombegrenzung oder Ext. Rückführung konfiguriert werden.

18.1 Haupteingang

Kalibrationsroutine für den Haupteingang
Wenn Sie die Hardwarekonfiguration des Einganges ändern, müssen Sie eine Kalibration durchführen. Das geschieht mit folgenden Schritten:
• Hilfsversorgung einschalten.
• Mit dem Bedienfeld ins Hardware Menü (PR55 = 5) gehen.
• Das min. Signal an den Eingang anlegen (ex. 0V für 0÷10V oder 4mA für 4÷20mA)
• Stelle den Parameter L I = 1
• F-Taste betätigen
• Dann das max. Signal an den Eingang legen (ex.10V für 0÷10V oder 20mA für 4÷20mA)
• Stelle den Parameter H I = 1
• F- Taste betätigen
Die Kalibration ist hiermit abgeschlossen.

19 RS485 Serielle Schnittstelle
Die serielle RS485 Schnittstelle ist am Klemmenblock M1 (14 und 13, bzw. 7 und 8)– 2 polig – ausgeführt.
Bis zu 127 REVO M Geräte können über den seriellen Bus verbunden werden.

<table>
<thead>
<tr>
<th>Klemmen S9</th>
<th>Klemmen S12</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>7</td>
<td>RS485 A</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>RS485 B</td>
</tr>
</tbody>
</table>
20 PG Stecker (Programmiergeräte Stecker)

21 MODBUS Kommunikation

21.1 MODBUS RTU Protokoll

Die RS485-Standardkommunikation benutzt das industrielle MODBUS-RTU-Standardprotokoll. Es gelten folgende Einschränkungen:

- Die Baudrate kann 4800-9600-19200-38400 Baud (Standard 19200) sein.
- Die Mehrfach Register Schreib Funktion (Funct. 16) ist auf Einzelparameter Übertragung limitiert.

Die folgenden MODBUS „functions“ werden unterstützt:

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>Read Holding Registers</td>
</tr>
<tr>
<td>16</td>
<td>Preset Multiple Registers</td>
</tr>
</tbody>
</table>

Broadcast Methode wird unterstützt:
Es ist möglich Broadcast Telegramme über Adresse 0, an alle Geräte zu senden ohne dass die Geräte eine Rückmeldung senden.

21.2 Telegramm Format

In den meisten Fällen beantwortet der Controller Master das Telegramm durch Rückübertragung der Adresse und der Funktionsnummer und dem angeforderten Wert.

Jedem Telegramm folgt ein 2 Byte langer CRC16 (16-Bit Cyclic Redundancy Check). Diese Prüfsumme wird nach einer Formel berechnet, bei der eine rekursive Division der Daten durch ein Polynom erfolgt, wobei als Ausgangswert jeder Division der Rest des Ergebnisses der vorherigen Division benutzt wird. $2^{16} + 2^{15} + 2^2 + 1$(Hex 18005)

Es werden folgende Änderungen vorgenommen:
- Da die Reihenfolge der Bits umgekehrt ist, wird auch das binäre Muster umgekehrt, wobei aus dem höchstwertigem Bit (MSB) das äußerste rechte Bit wird;
- Nur der Rest ist von Belang; das äußerste rechte (höchstwertige) Bit kann unberücksichtigt bleiben.
- Somit hat das Polynom den Wert hex A001.

Normale Bitreihenfolge:

<table>
<thead>
<tr>
<th>höchstes Bit</th>
<th>...</th>
<th>niedrigstes Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>höchstes Byte</td>
<td>...</td>
<td>niedrigstes Byte</td>
</tr>
</tbody>
</table>

Umgekehrte Bitreihenfolge:

<table>
<thead>
<tr>
<th>niedrigstes Bit</th>
<th>...</th>
<th>höchstes Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>niedrigstes Byte</td>
<td>...</td>
<td>höchstes Byte</td>
</tr>
</tbody>
</table>

Anmerkung: Da die Reihenfolge umgekehrt ist, wird beim CRC16 die umgekehrte Bitreihenfolge zurückgegeben.
Das nachfolgende Flussdiagramm zeigt die Prozedur den CRC16 zu berechnen.

C Language CRC 16 Example

```c
static short CRC16 (unsigned char *p_first,unsigned char *p_last)
{
    unsigned int crc=0xffff;
    short j;
    for (;p_first<=p_last;p_first++)
    {
        crc ^= *p_first;
        for(j=8;j>0;j--)
        {
            if(crc & 0x0001)
            {
                crc = crc >> 1;
                crc ^= 0xA001;
            }
            else
            {
                crc = crc >> 1;
            }
        }
    }
    return (crc);
}
```
21.3 Halteregister lesen (n Wörter lesen) – Funktion 03
Das an das Gerät übertragene Telegramm zum Abholen des Wertes aus einem oder mehreren Registern besteht aus folgenden acht Bytes:

<table>
<thead>
<tr>
<th>Geräte Adresse</th>
<th>Funkt.</th>
<th>1. Wort-Adresse</th>
<th>Wortanzahl</th>
<th>CRC 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3Hex</td>
<td>HI</td>
<td>LO</td>
<td>HI</td>
<td>LO</td>
</tr>
</tbody>
</table>

Die Antwort ist in Echo der ersten zwei Bytes (Adresse und Funktion), ein Byte mit der Anzahl der nachfolgenden Bytes exklusive CRC16, dem angeforderten Registerwert und danach 2 Bytes mit dem CRC16.

<table>
<thead>
<tr>
<th>Geräteadresse</th>
<th>Funkt.</th>
<th>No. Bytes</th>
<th>1. Wert</th>
<th>...</th>
<th>Letzter Wert</th>
<th>CRC 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 3Hex</td>
<td>HI</td>
<td>LO</td>
<td>...</td>
<td>HI</td>
<td>LO</td>
<td>LO</td>
</tr>
</tbody>
</table>

21.4 Halteregister schreiben (nur 1 Wort)
Dieses Telegramm ist 11 Byte lang. Pro Telegramm kann nur ein Parameter geschrieben werden. Es besteht aus Adresse 1 Byte, 1 Byte Function 10HEX, 2 Byte für die Parameternummer, ein 2 Byte langer Wortzählwert (der immer auf 1 gesetzt ist), ein 1 Byte langer Byte-Zählwert (immer 2), der zu schreibende Wert sowie die CRC16-Bytes:

<table>
<thead>
<tr>
<th>Geräteadresse</th>
<th>Funkt.</th>
<th>1. Wort-Adresse</th>
<th>Wortnummer</th>
<th>Cont.</th>
<th>Wert</th>
<th>CRC 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 10Hex</td>
<td>HI</td>
<td>LO</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>HI</td>
</tr>
</tbody>
</table>

Normalerweise sendet das Gerät folgendes 8-Bit-Antworttelegramm:
21.5 Fehler- und Statusantworten

Enthält ein übertragenes Telegramm ein falsches Zeichen (Paritätsfehler, Rahmenfehler usw.) bzw. wenn die CRC16-Prüfung einen Fehler ergibt oder das übertragene Telegramm einen Syntaxfehler (z.B. falscher Byte- oder Wortzählwert), wird dieses Telegramm vom Steller ignoriert. Ist das übertragene Telegramm syntaktisch korrekt, enthält aber einen unzulässigen Kode, sendet das Gerät folgende 5-Byte lange Ausnahmeantwort:

<table>
<thead>
<tr>
<th>Geräteadresse</th>
<th>Funkt.</th>
<th>Ausnahme-Nr.</th>
<th>CRC 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HI</td>
</tr>
</tbody>
</table>

Das Funktionsnummernbyte gibt die Funktionsnummer des fehlerhaften Telegramms an. Das oberste Bit ist gesetzt (d.h. Funktion 3 wird zu 0x83), und die Ausnahmenummer ist einer der folgenden Codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Ursache</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ILLEGAL FUNCTION</td>
<td>Funktionsnummer außerhalb des zulässigen Bereiches</td>
</tr>
<tr>
<td>2</td>
<td>ILLEGAL DATA ADDRESS</td>
<td>Parameter-ID außerhalb des zulässigen Bereiches, bzw. nicht unterstützt</td>
</tr>
<tr>
<td>3</td>
<td>ILLEGAL DATA VALUE</td>
<td>Versuch, ungültige Daten zu schreiben/erforderliche Aktion nicht ausgeführt</td>
</tr>
</tbody>
</table>

ANMERKUNG: Das Schreiben eines Parameterwertes gleich seinem Istwert ist eine gültige Transaktion und verursacht kein Fehlerantworttelegramm.

21.6 Definition der Geräteadresse

Der Thyristorsteller muss eine eigene Adresse durch den Anwender erhalten (im Bereich 1-127). Die Adresse wird im Hardware Menü Parameter Rddr definiert. Der Thyristor reagiert nicht auf Telegramme, welche eine andere Adresse enthalten.

Ausgenommen ist die Adresse 0 (Broadcast) auf die jedes Gerät reagiert aber keine Rückantwort generiert.
22 Konfigurations- Parameter

Die Konfigurationsparameter sind über das Bedienfeld, den Software Konfigurator und die RS485 Schnittstelle zugreifbar. Über die serielle RS485 Schnittstelle sind die Parameter nicht in Menüs geteilt sondern ausschließlich in numerischer Reihenfolge verfügbar.

<table>
<thead>
<tr>
<th>Konfigurationsparameter</th>
<th>Funktionsbeschreibung</th>
<th>Min/Max</th>
<th>Wert</th>
<th>Beispiel</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>P010 (H0A)</td>
<td>Ausgangsspannung</td>
<td>Zeigt die aktuelle AVG Ausgangsspannung</td>
<td>0 ÷ 1023V</td>
<td>230V entspricht 230 ausgelesen</td>
<td>-</td>
</tr>
<tr>
<td>P011 (H0B)</td>
<td>Ausgangsstrom</td>
<td>Zeigt den RMS Laststrom an Leistungsklemme L1.</td>
<td>0 ÷ 1023A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P012 (H0C)</td>
<td>Ausgangsleistung</td>
<td>Zeigt die aktuelle RMS Ausgangsleistung in Prozent(%)</td>
<td>0 ÷ 1023 (0 ÷ 3FF Hex) entspricht 0..100% von U x I nominal</td>
<td>von 0 = 0% bis 1023 =100%.</td>
<td>-</td>
</tr>
<tr>
<td>P013 (H0D)</td>
<td>Status Bits</td>
<td>Nachfolgende Bits zeigen den “Status” des Thyristorstellung</td>
<td>Bit 0(1) = 1 -> Thyristorkurzschluss</td>
<td>1 -> Thyristor OK</td>
<td>1 -> Thyristor OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 1(2) = 1 -> Lastfehler (HB Alarm)</td>
<td>0 -> Last OK (HB Alarm)</td>
<td>0 -> Last OK (HB Alarm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 2(4) = 1 -> Ausgang aktiv (EIN)</td>
<td>0 -> Kein Ausgangssignal (AUS)</td>
<td>0 -> Kein Ausgangssignal (AUS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 3(8) = 1 -> HB Kalibrierung aktiv</td>
<td>0 -> Kalibrierroutine aus</td>
<td>0 -> Kalibrierroutine aus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 4</td>
<td>nicht verwendet</td>
<td>nicht verwendet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 5(32) = 1 -> Übertemperatur Kühlkörper</td>
<td>0 -> Kühlkörper OK</td>
<td>0 -> Kühlkörper OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 6</td>
<td>nicht verwendet</td>
<td>nicht verwendet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 7</td>
<td>nicht verwendet</td>
<td>nicht verwendet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 8(256) = 1 -> Digitaleingang 1 aktiv</td>
<td>0 -> Digitaleingang 1 inaktiv</td>
<td>0 -> Digitaleingang 1 inaktiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 9(512) = 1 -> Digitaleingang 2 aktiv</td>
<td>0 -> Digitaleingang 2 inaktiv</td>
<td>0 -> Digitaleingang 2 inaktiv</td>
</tr>
<tr>
<td>P014 (H0E)</td>
<td>Kommando Bits</td>
<td>Nachfolgende Bits zum Ändern der Zustände via RS485</td>
<td>Bit 0 = 0 nicht verwendet</td>
<td>Diese Bits werden nach einem Neustart oder Spannungsausfall auf 0 gesetzt!</td>
<td>Ausgenommen Bit 4 für die Strombegrenzung.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 1 = 1 -> Sollwert Digital (siehe P015, (nur wenn DI1 oder DI2 nicht 3)</td>
<td>0 -> Sollwert Analog (siehe P015, (nur wenn DI1 oder DI2 nicht 3)</td>
<td>0 -> Sollwert Analog (siehe P015, (nur wenn DI1 oder DI2 nicht 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 2 = 1 -> Enable Ausgang (nur wenn DI1 oder DI2 nicht 1)</td>
<td>0 -> Ausgang gesperrt (nur wenn DI1 oder DI2 nicht 1)</td>
<td>0 -> Ausgang gesperrt (nur wenn DI1 oder DI2 nicht 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 3 = 1 -> Quittiere/Reset HB Alarm</td>
<td>0 ->Enable Strombegrenzung über Analogeingang</td>
<td>0 ->Enable Strombegrenzung über Analogeingang</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bit 4 = 0 ->Enable Strombegrenzung via Tastatur/Schnittstelle (digital)</td>
<td>1 -> Enable Strombegrenzung via Tastatur/Schnittstelle (digital)</td>
<td>1 -> Enable Strombegrenzung via Tastatur/Schnittstelle (digital)</td>
</tr>
</tbody>
</table>
P015 (H0F)
Digitaler (aktiver) Sollwert
Funktion: Zeigt den aktiven Sollwert. Wenn P014 Bit1 = 1, dann ist dieser Parameter via RS485 beschreibbar und definiert den digitalen Sollwert.
Min/Max: 0 ÷ 1023 (0 ÷ 3FF Hex)
Wert: -
Ab Werk: 0
Beispiel:
Eingang 4mA -> P015 = 0 (0%)
Eingang 12mA -> P015 = 512 (50%)
Eingang 20mA -> P015 = 1023 (100%)
Anmerkung: -

P016 (H10)
Ausgang Begrenzung (Skalierung)
Funktion: Ein Skalierungsfaktor für das Eingangssignal
Min/Max: 0 ÷ 255 (0 ÷ FF Hex)
Wert: von 0 = 0% Ausgangsgröße, bis 255 = 100% Ausgangsgröße.
Ab Werk: -
Beispiel: -
Anmerkung: Damit wird die Ausgangsleitung linear begrenzt

![Diagram](image.png)

P017 (H11)
Stromgrenze für Begrenzung
Funktion: Strombegrenzung
Min/Max: 0 ÷ 1023 (0 ÷ 3FF Hex)
Wert: von 0 .. 1023 = 0%.. 100%
Ab Werk: -

P018 (H12)
Betriebsart
Funktion: Bestimmt die Betriebsart.
Min/Max: -
Wert: 04= PA (Phasenanschnitt)
20= PA + Soft Start
35= BF + Delayed Trigger
Ab Werk: 4 (wenn nicht im Bestellkode definiert)
Beispiel: -
Anmerkung: -

P019 (H13)
Rückführung
Funktion: Definiert die Rückführung
Min/Max: -
Wert: 000 = V2
001 = keine („open Loop“)
032 = V (RMS)
064 = I (RMS)
128 = VxI (P – RMS)
Ab Werk: 1 (wenn nicht im Bestellkode angegeben)
Beispiel: -
Anmerkung: -
P020 (H14) \(bF_n\) **Zykluszeit für BF**

Funktion:
Definiert die Pulsdauer (variabel) in Vollwellen bei 50% Leistungsanforderung nur für BF+DT Modus.

Min/Max: 1 ÷ 255 Vollwellen

Wert: -

Ab Werk: 8 (wenn nicht im Bestellcode definiert)

Beispiel: -

Anmerkung: -

P022 (H16) \(dt\) **Trigger Verzögerung (Delayed Trigger)** \(^\circ\)

Funktion:
Definiert die Zündwinkelverzögerung in der 1. Halbwelle in Winkel °.

Min/Max: 0 ÷ 255 (0 ÷FF Hex)

Wert: von 0 = 0° bis 255 = 100°.

Ab Werk: 0

Beispiel: -

Anmerkung: -

P023 (H17) \(rP_u\) **Soft Start Rampe für PA**

Funktion:
Definiert die Zeit für Soft Start Rampe (0÷100% Spannung)

Min/Max: -

Wert: -

Ab Werk: -

Beispiel: -

Anmerkung: -

P026 (H1A) \(P_b\) **Proportional Band** \(\%\)

Funktion:
Definiert das Proportionalband (Verstärkung) für die Rückführung

Min/Max: 0 ÷ 255 (0 ÷FF Hex)

Wert: -

Ab Werk: VxI oder V2 = 5 Hex

Beispiel: -

Anmerkung: Kleinere Werte erhöhen die Reaktionsgeschwindigkeit, verringern aber die Stabilität.

P027 (H1B) \(\xi\) **Integralzeitkonstante** \(\%\)

Funktion:
Definiert die Integralzeit (Nachstellzeit) für die Rückführung

Min/Max: 0 ÷ 255 (0 ÷FF Hex)

Wert: -

Ab Werk: 50 Hex

Beispiel: -

Anmerkung: Größere Werte erhöhen die Stabilität verringern aber die Reaktionszeit.

P028 (H1C) \(Hb_d\) **HB Verzögerung** \(\text{Sec}\)

Funktion:
Definiert die Verzögerung des HB Alarmes.

Min/Max: -

Wert: -

Ab Werk: -

Beispiel: -

Anmerkung: Verhindert irrtümliches Auslösen, bei Schleifringen oder Umschaltvorgängen.
P029 (H1D) HB_5 HB Empfindlichkeit % R/W
Funktion: Definiert die Widerstandsänderung (Erhöhung) welche den HB Alarm auslöst.
Die Einstellung erfolgt in % bezogen auf den nominalen Lastwiderstand.
Min/Max: 0,0 ÷ 100,0%
Wert:
Ab Werk: 100,0
Beispiel:
Anmerkung:

P030 (H1E) bRud Baud Rate R/W
Funktion: Definiert die Baudrate für die serielle Schnittstelle
Min/Max:
Wert: 0 = 4800
1 = 9600
2 = 19200
3 = 38400
Ab Werk: 2
Beispiel:
Anmerkung:

P031 (H1F) Addr Adresse R/W
Funktion: Definiert die Schnittstellenadresse des Thyristorstellers.
Min/Max: 1 ÷ 127
Wert:
Ab Werk: 1
Beispiel:
Anmerkung:

P032 (H20) Cd l Digitaleingang 1 - Funktion R/W
Funktion: Definiert die Funktion des Digitaleingangs 1
Min/Max:
Wert: 0 = Enable/Freigabe
2 = Feedback auf V Modus
3 = Setpoint Lokal/Remote
4 = Betriebsart auf PA Modus
Ab Werk: 2
Beispiel:
Anmerkung:

P033 (H21) Cd r Digitaleingang 2 - Funktion R/W
Funktion: Definiert die Funktion des Digitaleingangs 2
Min/Max:
Wert: 0 = Enable/Freigabe
2 = Feedback auf V Modus
3 = Setpoint Lokal/Remote
4 = Betriebsart auf PA Modus
Ab Werk: 0
Beispiel:
Anmerkung:

P034 (H22) Digitalausgang 1

Funktion: Definiert die Funktion des Relaisausgangs.
Min/Max: -
Wert:
 - 0 = HB & Thyristorkurzschluss + I Limit
 - 1 = Thyristorkurzschluss + I Limit
 - 2 = Nur Lastüberwachung + I Limit
 - 3 = I Limit
 - 4 = HB & Thyristorkurzschluss
 - 5 = Thyristorkurzschluss
 - 6 = Nur Lastüberwachung
 - 7 = Keine Funktion (AUS)

Ab Werk: 0
Beispiel: -
Anmerkung: -

P037 (H25) Nominale Lastspannung

Funktion: Definiert die nominale Spannung an der Last.
Min/Max: 24 ÷ 1000V
Wert: -
Ab Werk: Laut Bestellcode, (400V wenn nicht spezifiziert).
Beispiel: -
Anmerkung: Bitte unbedingt definieren, wird für die Leistungsberechnung und Lastüberwachung verwendet.

P038 (H26) Nominaler Laststrom

Funktion: Definiert den nominalen Strom an der Last.
Min/Max: 0 ÷ 700 für Steller bis 700A
Wert: -
Ab Werk: Laut Bestellcode, (max. Typenstrom wenn nicht spezifiziert).
Beispiel: -
Anmerkung: Bitte unbedingt definieren, wird für die Leistungsberechnung, Skalierung und Lastüberwachung verwendet.

P042 (H2A) A_{lu maximale Hilfsversorgung}

Funktion: definiert die maximale Hilfsversorgung.
Min/Max: 0 ÷ 1023V
Wert: 0 ÷ 1023
Ab Werk: -
Beispiel: -
Anmerkung: -

P044 (H2C) Eingangssignal

Funktion: Definiert die Signalart des Sollwerteingangs
Min/Max: -
Wert:
 - 1 = 0 ÷ 10V
 - 2 = 0 ÷ 20mA
 - 3 = 4 ÷ 20mA
Ab Werk: 1 (Wenn im Bestellcode nicht definiert)
Beispiel: -
Anmerkung: -
P045 (H2D)

Lastschaltung

Funktion: Definiert die Zündverzögerung

Min/Max:

Wert:
- 0 = Stern
- 1 = Stern + N
- 2 = Dreieck
- 3 = offenes Dreieck

Ab Werk: 0 (wenn nicht im Bestellkode definiert)

Beispiel: -

Anmerkung: -

P060 (H3C)

Start Anzeige

Funktion: Definiert den Parameter welcher nach dem Gerätestart angezeigt wird.

Min/Max:

Wert:
- 0 = P
- 1 = I
- 2 = V

Ab Werk: -

Beispiel: -

Anmerkung: -
23 Interne Halbleitersicherungen

Die Geräte verfügen über eingebaute superflinke Sicherungen mit geringem I^2t zum Schutz der Halbleiter vor Kurzschlüssen. Das I^2t der Sicherung muss 20% geringer als das I^2t des Thyristors sein. Die Garantie erlischt, wenn keine oder ungeeignete Sicherungen verwendet werden.

<table>
<thead>
<tr>
<th>Geräte Type</th>
<th>Bestellcode Ersatzsicherung</th>
<th>Strom (I_{RMS})</th>
<th>I^2T ($A^2 \text{ sec.}$)</th>
<th>Spannung (V AC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>280A (S9)</td>
<td>FUURB315</td>
<td>315</td>
<td>82000</td>
<td>660</td>
</tr>
<tr>
<td>400A (S12)</td>
<td>FU550FMM</td>
<td>550</td>
<td>215000</td>
<td>660</td>
</tr>
<tr>
<td>500A (S12)</td>
<td>FU700FMM</td>
<td>700</td>
<td>420000</td>
<td>660</td>
</tr>
<tr>
<td>600A (S12)</td>
<td>2xFU450FMM</td>
<td>900</td>
<td>420000</td>
<td>660</td>
</tr>
<tr>
<td>700A (S12)</td>
<td>2xFU450FMM</td>
<td>900</td>
<td>420000</td>
<td>660</td>
</tr>
</tbody>
</table>

Achtung: Die superflinken Sicherungen sind nur zum Schutz der Thyristoren und sind nicht zum Schutz der Installation geeignet.

Warnung: Wenn das Gerät an Spannung liegt, dann sind Lebensgefährliche Spannungen am Gerät. Öffnen Sie nicht den Sicherungshalter und berühren Sie keine Komponenten. Vor Wartungsarbeiten Gerät immer spannungsfrei schalten.
24 Wartung

Um die Kühlung zu gewährleisten, müssen Kühlkörper und Lüfterabdeckung gereinigt werden. Die Häufigkeit dieser Wartung hängt von den Umgebungsbedingungen / Verschmutzung ab. In periodischen Abständen sind die Schraubverbindungen für die Leistungsklemmen und Erdklemme zu überprüfen, ob sie entsprechend angezogen sind (siehe Verdrahtung).

24.1 Fehlerdiagnose

Kleine Fehler können lokal, entsprechend nachfolgender Tabelle, behoben werden. Wenn das nicht zum Erfolg führt, kontaktieren Sie uns oder den nächsten Händler.

<table>
<thead>
<tr>
<th>Fehler</th>
<th>Anzeige am Gerät</th>
<th>Mögliche Ursachen</th>
<th>Aktionen</th>
</tr>
</thead>
</table>
| Kein Laststrom | „ON“ LED leuchtet nicht | • Keine Hilfsversorgung
• Kein Eingangssignal
• Falsche Polarität des Eingangssignales | • Überprüfe Hilfsversorgung (siehe Anschlussdiagramm)
• Überprüfe Steuereingang
• Überprüfe Steuereingang |
| | „ON“ LED leuchtet | • Sicherung defekt
• Lastanschluss unterbrochen
• Lastfehler: „HB/SC“ LED leuchtet gelb (mit HB Option)
• Thyristorfehler: „HB/SC“ LED leuchtet rot (mit HB Option) | • Überprüfe Sicherung
• Überprüfe Lastkreis
• Überprüfe Heizung
• Tausche das Thyristormodul |
| Thyristorsteller arbeitet nicht ordnungsgemäß | | • Hilfsversorgung nicht innerhalb der Spezifikation
• Falsches Eingangssignal
• Eingang falsch eingestellt (außerhalb des Bereichs) | • Überprüfe die Hilfsversorgung
• Überprüfe Einstellung am Gerät
• Überprüfe Eingangsbereich |

24.2 Garantiebedingungen

Technische Änderungen und Irrtümer vorbehalten!
© CD.AUT-KUNST GmbH & Co. KG