1 Important warnings for safety ... 8
2 Note ... 9
3 Identification and Order Code ... 10
 3.1 Identification of the unit ... 10
 3.2 Order Code ... 11
4 Technical Specifications .. 12
 4.1 Environmental installation conditions ... 12
 4.2 Derating Curve .. 12
5 Installation ... 12
 5.1 Dimensions and Weight .. 13
 5.2 Fixing holes ... 13
6 Wiring instructions .. 14
 6.1 Out Terminal (Terminal block M1) .. 14
 6.2 Supply Terminal (Terminal block M2) .. 14
 6.3 Communication Terminal RS485 (Terminal block M3) 14
 6.4 Input Terminal (Terminal block M4) ... 14
 6.5 Connection Diagram .. 15
 6.6 Access to Ln – Tn terminal Screw .. 17
7 TU Module Basic ... 18
8 Control Panel .. 19
9 Display .. 21
 9.1 Indicators ... 22
 9.2 Possible outputs REVO TCM (Temperature Controller only) 22
 9.3 Possible outputs REVO TC (SSR + Temperature Controller) 22
10 Operative Mode ... 23
11 Functions .. 24
 11.1 Special Functions ... 24
 11.2 Manual Mode ... 25
 11.3 Showing break-down alarm .. 25
 11.4 Showing leakage alarm ... 26
 11.5 Showing loop-break alarm ... 26
12 Function “Soft start” .. 26
13 Detection of malfunctions .. 27
14 Programming Procedure .. 28
 14.1 Programming procedure Diagram .. 28
 14.2 SET POINT Group (SP) .. 29
 14.3 ALARM Group (RL) .. 31
 14.3.1 Alarm Function ... 33
 14.3.2 Alarm Hysteresis .. 37
14.3.3 Alarm Out ___ 37
14.3.4 Action of alarm output. __________________________ _________________________________ 38
14.3.5 Resetting of an Alarm __________________________ _________________________________ 38
14.3.6 Alarm mask _________________________________ __________________________________ 39
14.4 Control Group (Cntr) ___ 40
14.5 OUT Group(OUt) ___ 43
14.6 Group EHT (Functions setted also from input1 and input2)__________________________ 45
14.7 Group dEF (default of run time Loading)___ 47
14.8 Group P1 (Pallet 1 control parameters)___ 47
14.9 Group P2 (Pallet 2 control parameters)___ 49
14.10 Group P3 (Pallet 3 control parameters)___ 49

15 SELF-TUNING Algorithms __ 52
15.1 PreTune__ 52
15.2 SelfTune ___ 53

16 Serial RS485 and USB communication interface _________________________ 54

17 Configuration Mode __ 55
17.1 Description ___ 55
17.2 Configuration procedure diagram_______________________________________ 56
17.3 Group INPUT (inP) __ 58
17.4 Group I/O (io) ___ 60
17.4.1 Out 1 ______________________________________ __________________________________ 60
17.4.2 OUT 2 __ 61
17.4.3 OUT 3 or Di 1 __ 62
17.4.4 Out 4 ______________________________________ __________________________________ 64
17.4.5 General ___ 65
17.5 ALARM Group(AL) ___ 66
17.5.1 Alarm 1 ___ 66
17.5.2 Alarm 2 ___ 67
17.5.3 Alarm 3 ___ 68
17.6 Heating Break-Down Group (Hbdw) __ 69
17.7 Loop break Group(lbAL) ___ 69
17.8 SELFTUNE Group(tunE) ___ 70
17.9 SOFT START Group (SofT) ___ 71
17.10 Gruppo PARAMETRI VARI (iSC) ___ 71
17.11 RS485 Group (r485) ___ 74
17.12 Default Configuration Group (dEF) ___ 75
17.13 Notes ___ 76

18 Serial communications __ 77
18.1 Introduction to Modbus Protocol

18.2 Table 0

18.3 Words Address

18.4 Bits

18.5 Table 1 (West 6600)

18.6 Status Table (Word 7)

19 Default Parameter Loading

19.1 User procedure

19.2 Loading Default operative parameter

19.3 Default configuration parameter Loading

19.3.1 European table

19.3.2 Americana table

20 Calibration Procedure

20.1 Description

20.2 Guidelines for calibration

20.3 Calibration from keypad

20.3.1 TC and linear input calibration

20.3.2 Cold Junction Calibration

20.3.3 RTD Input Calibration

20.3.4 Input Calibration mA

20.3.5 Input 10 V Calibration

20.3.6 Current transformer Input calibration

20.4 Calibration from serial

20.4.1 Input TC and LINEAR Input calibration

20.4.2 Cold Junction Calibration

20.4.3 RTD Input Calibration

20.4.4 Input Calibration mA

20.4.5 Input 10 V Calibration

20.4.6 Calibrazione Input Trasformatore Amperometrico

20.5 Caricamento valori di calibrazione di default

21 Tables:

21.1 Table 1

21.2 Table 2

22 Test Hardware via seriale

22.1 Display Test

22.2 Led Test

22.3 FUNC key Test

22.4 MAN Key Test

22.5 UP key Test

22.6 DOWN key Test

22.7 EEPROM Test
<table>
<thead>
<tr>
<th>Test Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.8 Relè 1 Test</td>
<td>117</td>
</tr>
<tr>
<td>22.9 Relè 2 Test</td>
<td>117</td>
</tr>
<tr>
<td>22.10 Relè 3 Test</td>
<td>118</td>
</tr>
<tr>
<td>22.11 Relè 4 Test</td>
<td>118</td>
</tr>
<tr>
<td>22.12 Out 4 mA Test</td>
<td>118</td>
</tr>
<tr>
<td>22.13 Out 20 mA Test</td>
<td>118</td>
</tr>
<tr>
<td>22.14 Input 1 Test</td>
<td>118</td>
</tr>
<tr>
<td>22.15 Input 2 Test</td>
<td>118</td>
</tr>
<tr>
<td>22.16 10 mV measure Test</td>
<td>119</td>
</tr>
<tr>
<td>22.17 60 mV measure Test</td>
<td>119</td>
</tr>
<tr>
<td>22.18 4 mA measure Test</td>
<td>119</td>
</tr>
<tr>
<td>22.19 20 mA measure Test</td>
<td>119</td>
</tr>
<tr>
<td>22.20 0 ohm measure Test</td>
<td>120</td>
</tr>
<tr>
<td>22.21 300 ohm measure Test</td>
<td>120</td>
</tr>
<tr>
<td>22.22 1 V measure Test</td>
<td>120</td>
</tr>
<tr>
<td>22.23 10 V measure Test</td>
<td>120</td>
</tr>
<tr>
<td>22.24 RJ Test</td>
<td>121</td>
</tr>
<tr>
<td>22.25 TA 5 mA measure Test</td>
<td>121</td>
</tr>
<tr>
<td>22.26 TA 50 mA measure Test</td>
<td>121</td>
</tr>
</tbody>
</table>
Dichiarazione di Conformità

CD Automation s.r.l.
Controllers, Drives & Automation
Via Picasso, 34/36 - 20025 Legnano (MI) - Italia
P.I. 08925720156 - Tel. (0331) 577479 - Fax (0331) 579479
Internet: www.cdautomation.com - E-MAIL: info@cdautomation.com

Dichiarazione di Conformità

PRODUTTORE:
PRODUCT MANUFACTURER: CD Automation S.R.L.

INDIRIZZO:
ADDRESS: Via Pablo Picasso 34/36
20025 Legnano (Mi)
Italia

Dichiara che il prodotto:
Declare that the product:

Revo TC

FULFILS THE REQUIREMENTS OF THE STANDARD:

SODDISFA I REQUISITI DELLA NORMA:
Specifica di sicurezza EN60947-1 :2008
EN60947-4-3:2001
Specifica sulle emissioni EN60947-4-3:2000
Specifica sulle Immunità EN60947-4-3:2000

CDAutomation dichiara che i prodotti sopra menzionati sono conformi alla direttiva
CDAutomation declares that the products above mentioned they are conforming to the directive

EMC 2004/108/CEE e alla direttiva Bassa Tensione (low Voltage) 2006/95/CEE

DESCIZIONE DEL PRODOTTO:
PRODUCT DESCRIPTION: Unità di controllo potenza elettrica
Elettric power control

UTILIZZO:
SCOPE OF APPLICATION: Controllo processi termici
Thermal control process

Data di emissione: 20/04/2010
Issued on: 20/04/2010

Amministratore Unico e
Legale Rappresentante
Claudio Brizzi
1 Important warnings for safety

This chapter contains important information for the safety. The not observance of these instructions may result in serious personal injury or death and can cause serious damages to the Thyristor unit and to the components system included. The installation should be performed by qualified persons.

- The Thyristor unit are integral part of industrial equipments. When it is supply, the Thyristor unit is subject to dangerous tensions.
 - Don't remove the protection Cover.
 - Don't use these unit in aerospace applications and/ or nuclear.

- The nominal current corresponds to use at temperature not superior to 45°C.
 - The Thyristor unit must be mounted in vertical position and without obstruction above and below to allow a good flow ventilation.
 - The hot air of one thyristor unit must not invest the unit positioned above.
 - For side by side placed leave a space of 15mm between the unit.

- A suitable device must ensure that the unit can be electrically isolated from the supply, this allows the qualified people to work in safety.

- Protection (Protection, Protezione)
The unit have IP20 protection rating as defined by the specific international. Is necessary consider the place of installation.

- Earth (Terre, Messa a terra)
For safety, the Thyristor unit with isolated heat-sink must be connected to earth. Earth impedance should be correspondent to local earth regulation. Periodically the earth efficiency should be inspected.

- Electronic supply (Alimentation électronique, Alimentazione elettronica)
The electronic circuit of the Thyristor unit must be supplied by dedicated voltage for all electronic circuits and not in parallel with coil contactors, solenoids and other. It's recommended to use a shielded transformer.

- Electric Shock Hazard (Risque de choque électrique, Rischi di scosse elettriche)
When the Thyristor unit is energized, after the power supply is shut off, wait least a minute for allow the discharge of the internal capacitors where there is a dangerous tension. Before working, make sure that:
 - Only authorized personnel must perform maintenance, inspection, and replacement operations.
 - The authorized personnel must read this manual before to have access to the unit.
 - Unqualified People don't perform jobs on the same unit or in the immediate vicinities.
Important warnings (Attention, Avvertenze importanti)
During the operations with units under tension, local regulations regarding electrical installation should be rigidly observed:

- Respect the internal safety rules.
- Don't bend components to maintain insulation distances.
- Protect the units from high temperature humidity and vibrations.
- Don't touch components to prevent electrostatic discharges on them.
- Verify that the size is in line with real needs.
- To measure voltage current etc. on unit, remove rings and other jewels from fingers and hands.
- Authorized personnel that work on thyristor unit under power supply voltage must be on insulated board.

This listing does not represent a complete enumeration of all necessary safety cautions.

Electromagnetic compatibility
(Compatibilità électromagnétique, Compatibilità elettromagnetica)
Our thyristor units have an excellent immunity to electromagnetic interferences if all suggestions contained in this manual are respected. In respect to a good Engineering practice, all inductive loads like solenoids contactor coils should have a filter in parallel.

Emissions (Emission, Emissioni)
All solid-state power controllers emit a certain amount of radio-frequency energy because of the fast switching of the power devices.
The CD Automation's Thyristor unit are in accord with the EMC norms, CE mark. In most installations, near by electronic systems will experience no difficulty with interference. If very sensitive electronic measuring equipment or low-frequency radio receivers are to be used near the unit, some special precautions may be required. These may include the installation of a line supply filter and the use of screened (shielded) output cable to the load.

2 Note

Warning: This icon is present in all the operational procedures where the Improper operation may result in serious personal injury or death

Caution: This icon is present in all the operational procedures where the Improper operation can cause damage for the unit.

CD Automation reserves the right to modify the own products and this manual without any advise.
3 Identification and Order Code

3.1 Identification of the unit

Attention: Prima dell’installazione, assicurarsi che l’unità a thyristor non abbia subito danni durante il trasporto. In caso di danneggiamento, notificarlo immediatamente al corriere.

The identification's label give all the information regarding the factory settings of the Thyristor unit, this label is on the unit, like represented in figure.
Verify that the product is the same thing as ordered.
3.2 Order Code

REVO TC

<table>
<thead>
<tr>
<th>3</th>
<th>Phase Controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PHASE UNIT 1PH</td>
<td>1</td>
</tr>
<tr>
<td>2 PHASE UNIT 2PH</td>
<td>2</td>
</tr>
<tr>
<td>3 PHASE UNIT 3PH</td>
<td>3</td>
</tr>
</tbody>
</table>

Phase Current 1PH/2PH/3PH

<table>
<thead>
<tr>
<th>Description code</th>
<th>Numeric code</th>
</tr>
</thead>
<tbody>
<tr>
<td>30A</td>
<td>0 3 0</td>
</tr>
<tr>
<td>35A</td>
<td>0 3 5</td>
</tr>
<tr>
<td>40A</td>
<td>0 4 0</td>
</tr>
<tr>
<td>60A</td>
<td>0 6 0</td>
</tr>
<tr>
<td>90A</td>
<td>0 9 0</td>
</tr>
<tr>
<td>120A</td>
<td>1 2 0</td>
</tr>
<tr>
<td>150A</td>
<td>1 5 0</td>
</tr>
<tr>
<td>180A</td>
<td>1 8 0</td>
</tr>
<tr>
<td>210A</td>
<td>2 1 0</td>
</tr>
</tbody>
</table>

Aux. Voltage supply

<table>
<thead>
<tr>
<th>Description code</th>
<th>Numeric code</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:24V ac dc</td>
<td>4</td>
</tr>
</tbody>
</table>

Input

<table>
<thead>
<tr>
<th>Description code</th>
<th>Numeric code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple</td>
<td>T</td>
</tr>
<tr>
<td>PT 100</td>
<td>N</td>
</tr>
<tr>
<td>0:10V dc</td>
<td>V</td>
</tr>
<tr>
<td>4.20mA</td>
<td>A</td>
</tr>
</tbody>
</table>

Output 2

<table>
<thead>
<tr>
<th>Description code</th>
<th>Numeric code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay Output 2</td>
<td>R</td>
</tr>
<tr>
<td>Heating Only</td>
<td>0</td>
</tr>
</tbody>
</table>

Output 3

<table>
<thead>
<tr>
<th>Description code</th>
<th>Numeric code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 off D/I 24V d.c.</td>
<td>1</td>
</tr>
<tr>
<td>1 off D/O Relay contact</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuse & Option

<table>
<thead>
<tr>
<th>Description code</th>
<th>Numeric code</th>
</tr>
</thead>
<tbody>
<tr>
<td>For All Units .<= 40A</td>
<td>F</td>
</tr>
<tr>
<td>Fuse + Fuseholder</td>
<td>Y</td>
</tr>
<tr>
<td>Fuse + Fuseholder + TA</td>
<td>H</td>
</tr>
<tr>
<td>Fuse + Fuseholder + TA + HB with screw terminal</td>
<td>X</td>
</tr>
<tr>
<td>Fuse + Fuseholder + TA + HB with Flat Cable</td>
<td></td>
</tr>
<tr>
<td>For All Units > 40A</td>
<td>F</td>
</tr>
<tr>
<td>Fixed Fuse Standard</td>
<td>Y</td>
</tr>
<tr>
<td>Fixed Fuse + TA</td>
<td>H</td>
</tr>
<tr>
<td>Fixed Fuse + TA + HB</td>
<td></td>
</tr>
</tbody>
</table>

110 Fan Option

<table>
<thead>
<tr>
<th>Description code</th>
<th>Numeric code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without fan unit = 90A</td>
<td>9</td>
</tr>
<tr>
<td>With Fan at 110V</td>
<td>1</td>
</tr>
<tr>
<td>Unit> 90A</td>
<td>2</td>
</tr>
</tbody>
</table>

Approvals

<table>
<thead>
<tr>
<th>Description code</th>
<th>Numeric code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE EMC For European Market</td>
<td>0</td>
</tr>
<tr>
<td>cUL For American Market up to 210A</td>
<td>L</td>
</tr>
</tbody>
</table>

Manual

<table>
<thead>
<tr>
<th>Description code</th>
<th>Numeric code</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Italian Manual</td>
<td>1</td>
</tr>
<tr>
<td>English Manual</td>
<td>2</td>
</tr>
<tr>
<td>German Manual</td>
<td>3</td>
</tr>
<tr>
<td>French Manual</td>
<td>4</td>
</tr>
</tbody>
</table>

Version

<table>
<thead>
<tr>
<th>Description code</th>
<th>Numeric code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard unit with a single fuse</td>
<td>1</td>
</tr>
<tr>
<td>Unit with 2 Fuses + Fuse Holder, <=40A (Just on single phase units)</td>
<td>2</td>
</tr>
<tr>
<td>Units with 2 Fuse + Fuses + Fuse Holder, <=40A (Available with single-phase units)</td>
<td>3</td>
</tr>
</tbody>
</table>

Legend
- **CT** = Current Transformer
- **HB** = Heater Break Alarm

Note (1): Fixed fuses over 40A
4 Technical Specifications

4.1 Environmental installation conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>0-40°C at nominal current. Over 40°C use the derating curve.</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-25°C a 70°C</td>
</tr>
<tr>
<td>Installation place</td>
<td>Don’t install at direct sun light, where there are conductive dust, corrosive gas, vibration or water and also in salty environmental.</td>
</tr>
<tr>
<td>Altitude</td>
<td>Up to 1000 meter over sea level. For higher altitude reduce the nominal current of 2% for each 100m over 1000m</td>
</tr>
<tr>
<td>Humidity</td>
<td>From 5 to 95% without condense and ice</td>
</tr>
<tr>
<td>Pollution Level</td>
<td>Up to 2nd Level ref. IEC 60947-1 6.1.3.2</td>
</tr>
</tbody>
</table>

4.2 Derating Curve

5 Installation

Before to install, make sure that the Thyristor unit have not damages.
If the product has a fault, please contact the dealer from which you purchased the product.
Verify that the product is the same thing as ordered.
The Thyristor unit must be always mounted in vertical position to improve air cooling on heat-sink.
Maintain the minimum distances in vertical and in horizontal as represented.
When more unit has mounted inside the cabinet maintain the air circulation like represented in figure.
Sometimes is necessary installing a fan to have better air circulation.
5.1 Dimensions and Weight

<table>
<thead>
<tr>
<th>Size</th>
<th>W (mm)</th>
<th>H (mm)</th>
<th>D (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2PH</td>
<td>108</td>
<td>121</td>
<td>185</td>
<td>1.76</td>
</tr>
</tbody>
</table>

5.2 Fixing holes
6 Wiring instructions

Warning: Before connecting or disconnecting the unit check that power and control cables are isolated from voltage sources.

6.1 Out Terminal (Terminal block M1)

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
<th>SSR Out</th>
<th>DI Input</th>
<th>Relay Out</th>
<th>Digital Input/Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OUT4</td>
<td>SSR−</td>
<td>DI2</td>
<td>C</td>
<td>DI/O 2</td>
</tr>
<tr>
<td>2</td>
<td>OUT4</td>
<td>SSR+</td>
<td>DI2</td>
<td>NO</td>
<td>DI/O 2</td>
</tr>
<tr>
<td>3</td>
<td>OUT3</td>
<td>SSR−</td>
<td>DI1</td>
<td>C</td>
<td>DI/O 1</td>
</tr>
<tr>
<td>4</td>
<td>OUT3</td>
<td>SSR+</td>
<td>DI1</td>
<td>NO</td>
<td>DI/O 1</td>
</tr>
<tr>
<td>5</td>
<td>OUT2</td>
<td>SSR−</td>
<td>−</td>
<td>C</td>
<td>−</td>
</tr>
<tr>
<td>6</td>
<td>OUT2</td>
<td>SSR+</td>
<td>−</td>
<td>NO</td>
<td>−</td>
</tr>
<tr>
<td>7</td>
<td>TA</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>8</td>
<td>TA</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>9</td>
<td>OUT1</td>
<td>SSR−</td>
<td>−</td>
<td>C</td>
<td>−</td>
</tr>
<tr>
<td>10</td>
<td>OUT1</td>
<td>SSR+</td>
<td>−</td>
<td>NO</td>
<td>−</td>
</tr>
</tbody>
</table>

“−” = Not available

6.2 Supply Terminal (Terminal block M2)

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Supply 24Vdc/ac</td>
</tr>
<tr>
<td>12</td>
<td>Supply 24Vdc/ac</td>
</tr>
</tbody>
</table>

6.3 Communication Terminal RS485 (Terminal block M3)

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>RS485 A +</td>
</tr>
<tr>
<td>B-</td>
<td>RS485 B -</td>
</tr>
</tbody>
</table>

6.4 Input Terminal (Terminal block M4)

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>PT100</td>
</tr>
<tr>
<td>14</td>
<td>TC+ PT100</td>
</tr>
<tr>
<td>15</td>
<td>TC- Compensazione</td>
</tr>
</tbody>
</table>
6.5 Connection Diagram

Revo TC Basic:

Revo TC with flat wiring system Option:
Caution: this procedure must be performed only by qualified persons.

* See Out terminal chapter for more informations

* Only with flat wiring system Option: connect with proper cable (RJ45 Cat 5E Patch Cable UTP) as shown:
The cable supplied by CD Automation are

<table>
<thead>
<tr>
<th>Length</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,15 m</td>
<td>ICOC U5EB-001</td>
</tr>
<tr>
<td>0,3 m</td>
<td>ICOC U5EB-003-GREE</td>
</tr>
<tr>
<td>0,5 m</td>
<td>ICOC U5EB-005-GREE</td>
</tr>
<tr>
<td>1 m</td>
<td>ICOC U5EB-010-GREE</td>
</tr>
<tr>
<td>2 m</td>
<td>ICOC U5EB-020-GREE</td>
</tr>
<tr>
<td>3 m</td>
<td>ICOC U5EB-030-GREE</td>
</tr>
<tr>
<td>5 m</td>
<td>ICOC U5EB-050-GREE</td>
</tr>
<tr>
<td>7,5 m</td>
<td>ICOC U5EB-075-GREE</td>
</tr>
<tr>
<td>10 m</td>
<td>ICOC U5EB-100-GREE</td>
</tr>
<tr>
<td>15 m</td>
<td>ICOC U5EB-150-GREE</td>
</tr>
</tbody>
</table>

6.6 Access to Ln – Tn terminal Screw

1. Open fuse holder by pulling the frontal cover

2. Fix the wire on Ln

3. Fix the wire on Tn

4. Close the cover by pressing.
7 TU Module Basic

Revo TU is a termination unit that provides the power supply and RS485 comms (modbus RTU) for up to max 10 REVO TC units.

Terminal block M1

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS485 B -</td>
</tr>
<tr>
<td>2</td>
<td>RS485 A +</td>
</tr>
<tr>
<td>3</td>
<td>Global Output</td>
</tr>
<tr>
<td>4</td>
<td>Global Output</td>
</tr>
</tbody>
</table>

Terminal block M2

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Not Used</td>
</tr>
<tr>
<td>6</td>
<td>Supply 24Vdc/ac</td>
</tr>
<tr>
<td>7</td>
<td>Supply 24Vdc/ac</td>
</tr>
</tbody>
</table>

Terminal Block M3 for flat wiring system
8 Control Panel

The keyboard is composed of **four push button** properly identified and protected: depending on the status of each device button assumes a specific function, as described below.

<table>
<thead>
<tr>
<th>Text or Combination</th>
<th>Description of function associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲</td>
<td>Configuration and operational</td>
</tr>
<tr>
<td></td>
<td>Skip to next parameter or group</td>
</tr>
<tr>
<td></td>
<td>Configuration and ongoing operational and edit</td>
</tr>
<tr>
<td></td>
<td>Increases the value of the parameter currently displayed</td>
</tr>
<tr>
<td>▲</td>
<td>Operating with manual output</td>
</tr>
<tr>
<td></td>
<td>Increases the value of control output</td>
</tr>
<tr>
<td></td>
<td>Automatic Operation</td>
</tr>
<tr>
<td></td>
<td>If enabled, after 3 sec ill set point increases</td>
</tr>
<tr>
<td>▼</td>
<td>Configuration and operational</td>
</tr>
<tr>
<td></td>
<td>Skip to the previous group or parameter</td>
</tr>
<tr>
<td>▼</td>
<td>Configuration and ongoing operational and edit</td>
</tr>
<tr>
<td></td>
<td>Decreases the value of the parameter currently displayed</td>
</tr>
<tr>
<td>▼</td>
<td>Operating with manual output</td>
</tr>
<tr>
<td></td>
<td>Decreases the value of control output</td>
</tr>
<tr>
<td>▼</td>
<td>Automatic Operation</td>
</tr>
<tr>
<td></td>
<td>If enabled, after 3 sec the set point decreases</td>
</tr>
<tr>
<td>FUNC</td>
<td>Operating</td>
</tr>
<tr>
<td></td>
<td>Release</td>
</tr>
<tr>
<td></td>
<td>Avoid the Change of the value displayed through the upper LCD.</td>
</tr>
<tr>
<td></td>
<td>Accept the changed value</td>
</tr>
<tr>
<td>FUNC</td>
<td>Operating</td>
</tr>
<tr>
<td></td>
<td>T> 3 sec</td>
</tr>
<tr>
<td></td>
<td>Special Views: load current, leakage current, heating power, the cooling power, firmware version.</td>
</tr>
<tr>
<td>MAN</td>
<td>Configuration</td>
</tr>
<tr>
<td></td>
<td>Exit the current group</td>
</tr>
<tr>
<td></td>
<td>While editing a parameter abort editing</td>
</tr>
<tr>
<td>MAN</td>
<td>Configuration</td>
</tr>
<tr>
<td></td>
<td>Exit the current group</td>
</tr>
<tr>
<td></td>
<td>While editing a parameter abort editing</td>
</tr>
</tbody>
</table>
Operating
during numeric editing
Reaches the max / min set for the actual parameter

Configuration
during numeric editing
Reaches the max / min set for the current parameter

FUNC + MAN
Operating
$t > 3$ sec.
Input in configuration mode

▲ + FUNC
Operating
$t > 3$ sec.
Lamp test

▼ + FUNC
Operating
$t > 3$ sec.
Input in calibration mode

▼ + MAN
Operativo
Show on the display below the load current or SetPoint
During operation, normal operating, the top display shows the process variable while the lower display shows the current setpoint.

Note: if the restriction is enabled to changes in setpoint (SPU, SPD), the setpoint value displayed may not match the actual value. In fact, if the group parameter SPUS misc configuration is set to appear FNSP the SP arrival, otherwise the current SP.

If properly enabled in the configuration you can increase or decrease the setpoint value directly from the operating mode.

To this should be button for 3 seconds. Taken down ▼ or ▲

At this point the change is enabled. Each press of two buttons will cause the increase or decrease of the SP.

Failure pressure of either button for more than 5 seconds will stop the edit.

To resume editing the SP press again require either button for 3 seconds.

If properly enabled configuration by pressing the UP and MAN on the lower display shows the current in the load. To return to the set point, press the same buttons.
9.1 Indicators

LED1 Switched on when the output 1 is ON state.
LED2 Switched on when the output 2 is ON state.
LED3 Switched on when the output 3 is ON state.
LED4 Switched on when the output 4 is ON state.
LED5 Flashing when the function tune is working and in calculating mode.
LED6 Flashing when the function adaptive is working.

The Led 1, 2, 3 o 4, if assigned to the status of the alarm 3, take the following feature:

- If the alarm 3 is in OFF state and also alarms Breakdown, leakage or loop-break are in OFF state
 the assigned LEDs are off

- If the alarm 3 is in ON state and also alarms breakdown, leakage or loop-break are in OFF state
 the assigned LEDs are On

- If the alarm 3 is in OFF state and one or more of the alarm of breakdown, leakage or di loop-break
 are in ON state, the assigned LEDs flashes every 1 second.

- If the alarm 3 is in ON state and one or more of the alarm of breakdown, leakage or loop-break
 are in ON state, the assigned LEDs flashes every 0.5 seconds.

9.2 Possible outputs REVO TCM (Temperature Controller only)

<table>
<thead>
<tr>
<th>Uscita</th>
<th>RELAY TC07-02</th>
<th>SSR TC07-03</th>
<th>Analogic TC07-01</th>
<th>DI Input TC07-05</th>
<th>Input/Output TC07-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OUT2</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OUT3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OUT4</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

= = Not available

9.3 Possible outputs REVO TC (SSR + Temperature Controller)

<table>
<thead>
<tr>
<th>Uscita</th>
<th>RELAY TC07-02</th>
<th>SSR TC07-03</th>
<th>Analogic TC07-01</th>
<th>DI Input TC07-05</th>
<th>Input/Output TC07-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT1</td>
<td>-</td>
<td>Fixed</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OUT2</td>
<td>X</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OUT3</td>
<td>X</td>
<td>-</td>
<td>--</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>OUT4</td>
<td>Fixed</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

= = Not available
10 Operative Mode

Description:

In operating mode, parameters can be viewed and modified in the present state of the device: to access the programming procedure, press the FUNC button and release it within 3 seconds.

The lower display shows the ID of the current group, while the upper display shows the string "Edt" permanently: the ▲ and ▼ buttons let you select the group to change, and allows the FUNC key to enter the selected group.

For each parameter in the group selected, the lower display shows the ID parameter as the upper display shows the current value: to switch to other parameters of the group acts on the ▲ and ▼.

Pressing the FUNC enter into modification of the displayed parameter (the upper display starts flashing).

With the ▲ and ▼ changing the current value displayed on the bottom.

Press the FUNC key to store the value currently displayed, pressing the MAN you exit without saving changes the new value.

For a list of parameters, see Chapter <Programming procedure>
11 Functions

11.1 Special Functions

By pressing for 3 sec the keys UP and MAN and the lower display, if enabled, the load current.
The next press the same button for 3 seconds will return to the SetPoint

By pressing the FUNC key for 3 seconds, you can see on the lower display in the following order:

• A character A followed by the value of the load current output.
• A character b followed by the leakage current value of output.
• A character H followed by the output value of heating (0-100%)
• A character C followed by cooling output value (0 - 100%)
• A t character followed by the value of the cold junction temperature detected
• A v character followed by the firmware version

Some information is only available if the instrument is properly configured.
The display returns to normal operating mode by pressing the MAN.
Pressing the ▲ + FUNC for 3 seconds activates the lamp test: all segments of all digits of the display
and front LEDs are switched on and off with 1 Hz frequency (duty-cycle 50%) until next keypress MAN.
11.2 Manual Mode

The manual mode can be activated by holding down the MAN button for 3 seconds, if enabled in the configuration (group misc parameter mnFn <> nonE) and only in normal operating mode.

Il display superiore visualizza la variabile di processo.

Esistono 3 modalità di funzionamento manuale (sempre definite in configurazione nel gruppo misc parametro mnFn):

The upper display shows the process variable.

There are 3 modes of operation manual (always defined in the configuration parameter group misc mnFn):

- **Classic Manual Mode:**
 The operator sets the percentage of output power from 0 to 100% for heating only operation, from -100% to 100% for operating heating / cooling.

The lower display shows the current power preceded by the letter P.
 The change from automatic mode to manual mode (and vice versa) will be in bumpless mode only if the integral action has not been previously excluded.
 If the transfer AUTO ▶ MAN occurred during selftune, at the return in the AUTO mode the instrument will operate in auto-tuning adaptive abled.

- **OFF Mode:** the operator determines the release of relay heating (if output in mA or V brings the power to 0).
- **Displayed load current mode:** in this case does not change any control over the load, but show the load current.

When switch on, the device is always in AUTO mode or, if properly selected in configuration, the state in which it was turned off.

11.3 Showing break-down alarm

The alarm condition detected in the measurement of current through the current transformer is indicated in **OR** on the relay or on the relays assigned to alarm 3.

The current sampling is done only if the state's output, which is inserted in the current transformer is maintained for at least 200ms **ON:** if during the current cycle time is not carried out any sampling, the value shown by the lower display will be "----".

This is shown only present if the group parameter HCEn Hbdu configuration is set to **ON**.
11.4 Showing leakage alarm

The alarm condition detected in the measurement of current through the current transformer is indicated in **OR** on the relay or on the relays assigned to alarm 3.

The current sampling is done only if the state's output, which is inserted in the current transformer is unenergized for at least 200ms: if during the current cycle time is not carried out any sampling, the value shown by the lower display will be "----".

This view is only present if the group parameter HCEn Hbdu configuration is set to ON.

11.5 Showing loop-break alarm

- **uscita di controllo al minimo e azione reverse**
- **uscita di controllo al massimo e azione direct**

Analogamente, la variabile di processo deve crescere se:

- **uscita di controllo al minimo e azione direct**
- **uscita di controllo al massimo e azione reverse**

La condizione di allarme viene segnalata in **OR** sul relè o sui relè assegnati all' allarme 3.

The loop-break alarm is generated by the dedicated algorithm when the control output is at the minimum / maximum value and the process variable changes in the time pre-chosen of amplitude below the threshold set in the configuration.

The process variable must decrease if:

- Control output to the minimum and Reverse Action
- Control output to the maximum and direct action

Similarly, the process variable must grow if:

- Control output to the minimum and direct action
- Control output to the maximum and reverse action

The alarm condition is reported in **OR** on the relay or the relays assigned to the alarm 3.

12 Function “Soft start”

When the instrument is switched on the function "soft start" protects temporarily the limit the output power. By limiting the heating power of switch on it’s possible to reduce the thermal stress to the heating elements. The user can configure the time and temperature threshold of the function "soft start".
13 Detection of malfunctions

The instrument can detect the following abnormal conditions of the process variable:

- over-range
- under-range
- sensor leads break

The condition of over-range is displayed by the characters "Undr" flashing in the upper display.
The condition of over-range is displayed with "oVrr" in the upper display.

Table 1 shows the state of OUT1 and OUT2 at the conditions of range of under-and over-range, according to the device settings (control mode heating / cooling and SEcF parameter value). The first four lines delineate the standard configuration.

<table>
<thead>
<tr>
<th>condition</th>
<th>Heating/ Cooling</th>
<th>SEcF</th>
<th>reverse</th>
<th>direct</th>
<th>reverse</th>
<th>direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>under-range</td>
<td>NO</td>
<td>0</td>
<td>ON</td>
<td>OFF</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>over-range</td>
<td>NO</td>
<td>0</td>
<td>OFF</td>
<td>ON</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>under-range</td>
<td>SI</td>
<td>0</td>
<td></td>
<td></td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>over-range</td>
<td>SI</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>ON</td>
</tr>
<tr>
<td>under-range</td>
<td>---</td>
<td>1</td>
<td>SEcO</td>
<td></td>
<td>SecO</td>
<td></td>
</tr>
<tr>
<td>over-range</td>
<td>---</td>
<td>1</td>
<td>SEcO</td>
<td></td>
<td>SecO</td>
<td></td>
</tr>
<tr>
<td>under-range</td>
<td>---</td>
<td>2</td>
<td>standard</td>
<td></td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>over-range</td>
<td>---</td>
<td>2</td>
<td>SEcO</td>
<td></td>
<td>SecO</td>
<td></td>
</tr>
<tr>
<td>under-range</td>
<td>---</td>
<td>3</td>
<td>SEcO</td>
<td></td>
<td>SecO</td>
<td></td>
</tr>
<tr>
<td>over-range</td>
<td>---</td>
<td>3</td>
<td>standard</td>
<td></td>
<td>standard</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Security state Stati di sicurezza of the output in out-of-range condition.

Breakage of the temperature sensor can be reported as:

- over-range o under-range (configurable) for input TC/mV
- over-range for input RTD
- under-range for input mA / V (only with zero elevation)
14 Programming Procedure

14.1 Programming procedure Diagram

Figure 1 shows the state diagram of the programming process through which shows the strings displayed by the two front LCD display.

Fig 1
14.2 SET POINT Group (SP)

SETPOINT

Upper Display → \(SP \)
Lower Display → Valore di setpoint

Range
\(r_L \leftrightarrow r_H \)

SELFUREN
(available only if can be activated)

Upper Display → \(Stun \)
Lower Display → \(On \) or \(Off \)

AUXILIARY SETPOINT

Upper Display → \(SP_1 \)
Lower Display → Setpoint value

Range
\(r_L \leftrightarrow r_H \)

LOWER SETPOINT LIMIT

Upper Display → \(r_L \)
Lower Display → Lower limit value

Range
\(LoSc \leftrightarrow r_H \)

UPPER SETPOINT LIMIT

Upper Display → \(r_H \)
Lower Display → Upper limit value

Range
\(r_L \leftrightarrow HiSc \)
RATE OF CHANGE FOR POSITIVE CHANGES OF SETPOINT

Upper Display \(\rightarrow \) \(SP_u \)

Lower Display \(\rightarrow \) Value of *rate of change* applied to any positive change in setpoint.

Range
1 \(\leftrightarrow \) 100 digit/min

Inf: rate of change forced to a Step.

RATE OF CHANGE FOR NEGATIVE CHANGES OF SETPOINT

Upper Display \(\rightarrow \) \(SP_d \)

Lower Display \(\rightarrow \) Valore del *rate of change* applicato a ogni variazione negativa del setpoint.

Range
1 \(\leftrightarrow \) 100 digit/min

Inf: rate of change forced to a Step.
14.3 ALARM Group (AL)

SILENCED ALARM
(appears only with at least one of programmable alarms with manual reset)

Upper Display → mrSt
Lower Display → on

Functioning:
To silence the active alarms stored, press key FUNC.

ALARM1 THRESHOLD

Upper Display → AL1
Lower Display → Actual value

Range
Process alarm
 Span limit
Band alarm
 0 ↔ 500
Deviation alarm
 -500 ↔ 500

HYSTERESIS ALARM1

Upper Display → HSA1
Lower Display → Actual value

Range
 0.1% ↔ 100.0% of the span or 1LSD
ALARM2 THRESHOLD

Upper Display → AL2
Lower Display → Actual value

Range

Process alarm
- Limit of span

Band alarm
- 0 ↔ 500

Deviation alarm
- -500 ↔ 500

ISTERESI ALARM2

Upper Display → HSA2
Lower Display → Actual value

Range
- 0.1% ↔ 100.0% of the span or 1LSD

ALARM3 THRESHOLD

Upper Display → AL3
Lower Display → Actual value

Range

Process alarm
- Limit of span

Band alarm
- 0 ↔ 500

Deviation alarm
- -500 ↔ 500

ISTERESI ALARM3

Upper Display → HSA3
Lower Display → Actual value

Range
- 0.1% ↔ 100.0% of the span or 1LSD
14.3.1 Alarm Function

General notes:

An automatic regulation, control and / or supervision takes into consideration different alarms. In general, the alarms are "digital" elements or rather elements that can take only two values (true or false) because the condition that describes the alarm can only be 'true' (ON) or "false" (OFF).

The condition that describes the alarm is usually summarized by the ALARM FUNCTION because it defines its behavior.

Over the years, depending on the specific needs of various systems have been developed many different types of alarm (for example alarms, trends, alarms group, put alarms, etc. ...).

Here we will only considering alarms normally implemented on this controller.

The Functions of the alarms in the controller are 3 as follows:

1) Process alarm (or absolute)
2) Band Alarm
3) Deviation Alarm

1) Process alarm (or absolute)

The process alarm can be of two types:

A) Up alarm

 B) Low alarm

 Generally, the process alarm is an alarm which compares the instantaneous value of the measure (M) with the value assigned to the alarm (SA) (Threshold value)

A) If it is an **Up alarm**, the alarm will be ON when the measured value exceeds the threshold value

B) If it is a **Low alarm**, the alarm will be ON when the measured value is less than the threshold value (M < AS).
2) Band Alarm

We define "Controlling system" any automated system capable of performing the necessary actions to maintain the controlled variable (which usually coincides with the measured variable) as close as possible to a certain value (which is called set point).

The band alarm is a type of alarm that can only be done on a "Controlling system" because it links the value of the threshold on the Set point (SP).

In the Band alarm, the alarm threshold defines an area around the set point.

Again there are two possibilities:

A) **ON State** when the measure is **within** the bandwidth [(SP - SA) < M < (SP + SA)]

B) **ON State** when the measure is **outside** the bandwidth [M < (SP - SA) or M > (SP + SA)]

A) **ON State within** the bandwidth

B) **ON State outside** the bandwidth
3) Deviation Alarm

Also the deviation alarm can only be done on a "Controlling system" because it links the value of the threshold set point but in some ways is a cross between Process and Band alarm.

For this reasons the deviation alarm acts as a process alarm where the alert threshold is added or removed from the set point.

Again there are two possibilities:

A) deviation alarm Up \[M > (SP + SA)\]

B) Deviation alarm Down \[M < (SP - SA)\]
Note:
The band and deviation alarms automatically moving the absolute value of the threshold when you change the set point value.
The process alarm, however, is indifferent to changes of set points.
14.3.2 Alarm Hysteresis

The purpose of the hysteresis is to prevent, when the measurement is near the threshold and there are disturbances on the measure, the alarm state changes continuously from ON to OFF and vice versa.

To do this it’s possible to define a "safety margin" so that the alarm goes ON when the measure reaches a specified value (A) but does not go OFF before the measure reaches another value (B) more closely to the optimal condition.

Value (A) is used as the threshold and value (B) as the threshold more or less hysteresis;

The following example will clarify the foregoing.

Considering that we want to set a Low alarm process that goes ON at least 300 °C (value A) and returns to OFF only when the measure has risen to 360 °C (B value).

In this case the setting of the threshold is 300 (°C)

In questo caso il valore di soglia da impostare è 300 (°C) while the hysteresis have to be set equal to 60(°C).

Note. The hysteresis value is expressed on the instrument in % of full scale.

14.3.3 Alarm Out

Generally the state of an alarm is made visible to the user and can also produce physical actions on the system.

The status indication of an alarm can be:

1) Visual indication (a LED on the front of the instrument panel)
2) Software indication (state of a boolean variable on the serial communication)
3) State of a physical Out (normally a relay)

Note:

a) These three indications are present both individually than simultaneously.

b) At* State of a physical Out * are associated also physical action on the system.
14.3.4 Action of alarm output.

(also indicated as "Alarm Action")

When an alarm status is associated with the state of a physical output (ex. relay)
Quando allo stato di un allarme è associato lo stato di un uscita fisica (es. relè) it's necessary to define the relationship between the alarm state and relay state.

Two action are possibile:
1) Direct action: Out ON when the alarm is ON (ex.: excited relay when the alarm is ON)
2) Reverse action: Out OFF when the alarm is ON (ex.: un-excited relay when the alarm is ON)

Direct action is the most commonly used but you must remember that the reverse action allows to have an alarm signal when the instrument does not work or is off (because the ON state of alarm is indicated by the OFF state of output, when the instrument is switched off or not working the output will be definitely OFF).

In the case of relay output, the status of output may not be sufficient to describe the state of the contact. In fact, when the output relay is provided with changeover contacts it is clear that the choice of the normally closed contact (NC) or normally open (NO) allows for equal status of the relay to reverse the state of the contact.

However remains the considerations valid regarding the possibility of having an alarm signal when the instrument is switched off or not working (reverse action).

14.3.5 Resetting of an Alarm

The alarms we have seen are based on the concept that when the measure falls in the OFF area the alarm also goes OFF automatically. In these cases it is said that the alarm is equipped with automatic reset.

In some cases it is preferable that the alarm still remains in the ON condition even after the measure is back in the OFF zone, the alarm will return to the OFF condition only after a physical action (pressing a key or other). In this case we say that the alarm has a manual reset.

The reason of this choice is due to the level of danger of the anomaly reported from the alarm, an overcurrent can damage the system and cause fire or dangerous situations for the users.

Forcing the user to perform an action also ensures that we take note of the report and eliminate the cause of the problem before resetting the system.

Alarms with manual reset may have different behaviors depending on different situations but, generally, one can identify two families of behavior:

1) Alarm with unconditioned reset

Are those alarms that, when performed manually reset, set the alarm to OFF condition even if the alarm condition is still present.

A typical example are the alarms that drive the sirens, once the user reaches the machinery switch off the siren and then performs the necessary actions to remove the alarm condition. To get a further alarm signal is necessary that the measure goes to the area OFF and back in the ON area.
2) Alarm with conditioned reset

Are alarms that, when is running the manual reset, activate the alarm in OFF condition only if the alarm condition is no longer present.

For the conditioned alarms we have two types:

I. Alarms that require manual reset only after alarm condition has been eliminated (Otherwise remain in alarm). **This is the type of reset on this controller.**

II. Alarms that, if they are resetted when the alarm condition is still present, store the reset and run automatically when the alarm condition disappears.

It should however be noted that, even for resetting, has been developed a multitude of variations and types to meet the varied needs of the plant. As mentioned above describes only the most common condition and those normally present on the controllers.

14.3.6 Alarm mask

As we have said in many cases the alarm produces a physical action on the system.

Obviously, however, the alarm is usually set to report defects when the system is "fully operational".

The conditions of the plant startup or after a set point change does not satisfy the condition "fully operational" and can cause unwanted alarmi.

To avoid unwanted alarms were studied different solutions according to the type of system where the alarm is applied.

In the controller has been implemented a solution due to the measure.

If at the start up is detected an alarm condition, this condition is ignored until the measure reaches the area where the alarm is OFF, then the alarm resumed normal function.

If the alarm is programmed as band alarm or deviation, the standby function masks the alarm condition in start up and set point variation, until the value of process variable reaches the alarm threshold with hysteresis.

If is a process alarm the alarm conditions mask only during start up.

Se l'allarme è di processo, maschera le condizioni di allarme solamente in accensione.
14.4 Control Group (CntF)

PROPORTIONAL BAND

Upper Display \(\rightarrow \) Pb
Lower Display \(\rightarrow \) Actual value

Range

No selftune with O2Fn ≠ Cool
1.0% ↔ 100.0% dello span

No selftune with O2Fn = Cool
1.5% ↔ 100.0% dello span

Selftune with O2Fn ≠ Cool
LPb2 ↔ HPb

Selftune with O2Fn = Cool
LPb1 ↔ HPb

HYSTERESIS

(available only with ON/OFF – CntF = onoF (miSC group of configuration))

Upper Display \(\rightarrow \) HYS
Lower Display \(\rightarrow \) Actual value for ON/OFF

Range
0.1% ↔ 10.0% of span or 1LSD

INTEGRAL TIME

(available only with PID or PI - CntF <> onoF (miSC group of configuration))

Upper Display \(\rightarrow \) ti
Lower Display \(\rightarrow \) Actual value

Range
00.01 ↔ 20.00 mm.ss

Beyond the maximum value, on display the integral action is excluded.

With selftune activated, the lower limit is given by Lti
DERIVATIVE TIME
(availabele only with PI - CntF = Pi (miSC group of configuration))

Upper Display → td
Lower Display → Actual value

Range
00.01 ↔ 10.00 mm.ss
With selftune activated, the derivative time is equal to tl / 4

INTEGRAL PRELOAD
(availabele only with PID or PI - CntF <> onoF (miSC group of configuration))

Upper Display → iP
Lower Display → Actual value

Range
With O2Fn ≠ Cool
0 ↔ 100
With O2Fn = Cool
-100 ↔ 100
RELATIVE COOLING GAIN

(available only with PID or PI - CntF <> onoF (miSC group of configuration) with at least one output set as cooling)

Upper Display → rC
Lower Display → Actual value

Range
0.20 ↔ 1.00

When selftune is active and rCEn = On the range become

PAL = Air
0.85 ↔ 1.00

PAL = OIL
0.80 ↔ 0.90

PAL = H2O
0.30 ↔ 0.60

DEAD BAND/OVERLAP through HEATING/COOLING OUTPUT

(available only with PID oe PI - CntF <> onoF (miSC group of configuration)) with at least one output set as cooling)

Upper Display → oLAP
Lower Display → Valore attuale.

Negative values indicate dead band, positive values indicate overlap.

Range
-20 ↔ 50
14.5 OUT Group (\(\text{Out}\))

TIME OF CICLE OUT1
(available only with at least one output set as heating not analogic)

Upper Display \(\rightarrow\) CY1
Lower Display \(\rightarrow\) Actual Value.

Range
\(1 \leftrightarrow 200\) seconds

SUPERIOR LIMIT OUTPUT

Upper Display \(\rightarrow\) oLH
Lower Display \(\rightarrow\) Actual Value.

Range

With O2Fn ≠ Cool
0 \(\leftrightarrow\) 100

With O2Fn = Cool
-100 \(\leftrightarrow\) 100

TIME OF CICLE OUT2
(available only with at least one output set as heating not analogic)

Upper Display \(\rightarrow\) CY2
Lower Display \(\rightarrow\) Actual Value.

Range
1 \(\leftrightarrow\) 200 seconds

MAXIMUM RAMP-UP VARIATION ON OUTPUT

Upper Display \(\rightarrow\) mP
Lower Display \(\rightarrow\) Actual Value.

Range
1\% \(\leftrightarrow\) 25\% for second.

Over the max value the display show “inf” and the limitation is excluded.
THRESHOLD VALUE FOR BREAK-DOWN ALARM
(available only if HCEn = On)
Upper Display → Hbd
Lower Display → Actual Value (A)

Range
0 ↔ FULL SCALE (see HCHS)

Note
- When the output that is added to the current transformer is in excited state of relays, the instrument measures the current absorbed by the load and generates an alarm if the current is below the value of Hbd parameter (a low current indicates a break-down partial or full load).
- The resolution of the threshold value is equal to 0.1A for range up to 20A, 1A to 20A to 100A range.

HYSTERESIS VALUE FOR BREAK-DOWN ALARM
(available only if HCEn = On)
Upper Display → HbdH
Lower Display → Actual Value

Range
0 ↔ 1.0

THRESHOLD VALUE FOR SHORT CIRCUIT ALARM
(available only if HCEn = On)
Upper Display → SCA
Lower Display → Actual Value (A)

Range
0 ↔ FULL SCALE (see HCHS)

Note
- When OUT1 relay is in unexcited state, the instrument measures the leakage current in the load and generates an alarm if the current exceeds the value of the parameter SCA (a high current indicates a partial break or total of the relay or SSR).
- The resolution of the threshold value is equal to 0.1A for range up to 20A, 1A to 20A to 100A range.
14.6 Group EHT (Functions setted also from input1 and input2)

The functions

- Auto/Manual
- SP/SP1
- Tune Insertion
- Silencing the alarm
- Control group selection

may be controlled from key panel, from serial or contact of input. To avoid conflicts, through this group, is possible to select from which of these functions will be controlled.

FUNCTION COMMAND AUTO/MANUAL

(available only if is present a contact module or digital IO on Input1 or Input2 and if one of the two input is configured by command Auto/Manual)

Upper display → mnoP
Lower display → Actual Value

Range

Sutc → Command from Input
Serh → Command from key panel or serial

FUNCTION COMMAND SP/SP1

(available only if is present a contact module or digital IO on Input1 or Input2 and if one of the two input is configured by command SP/SP1)

Upper display → SPoP
Lower display → Actual Value

Range

Sutc → Command from Input
Serh → Command from key panel or serial
COMMAND TUNE INSERTION
(available only if is present a contact module or digital IO on Input1 or Input2 and if one of the two input is configured for tune insertion)

Upper display \rightarrow tnoP
Lower display \rightarrow Actual Value

Range
- Sutc \rightarrow Command from Input
- Serh \rightarrow Command from key penel or serial

COMMAND ALARM SILENCING
(available only if is present a contact module or digital IO on Input1 or Input2 and if one of the two input is configured for alarm silencing)

Upper display \rightarrow AroP
Lower display \rightarrow Actual Value

Range
- Sutc \rightarrow Command from Input
- Serh \rightarrow Command from key penel or serial

COMMANDO CONTROL GROUP SELECTION
(available only if is present a contact module or digital IO on Input1 or Input2 and if one of the two input is configured for control group selection)

Upper display \rightarrow Actual Value
Lower display \rightarrow PSnP

Range
- Sutc \rightarrow Command from Input
- Serh \rightarrow Command from key penel or serial
14.7 Group DEF (default of run time Loading)

Upper display → rt
Lower display → on

By pressing the key FUNC the default value are loaded

14.8 Group PAL1 (Pallet 1 control parameters)

PROPORTIONALE BAND

Upper display → Pb1
Lower display → Actual Value

Range

No selftune with O2Fn ≠ Cool
1.0% ↔ 100.0% of span

No selftune with O2Fn = Cool
1.5% ↔ 100.0% of span

Selftune with O2Fn ≠ Cool
LPb2 ↔ HPb

Selftune with O2Fn = Cool
LPb1 ↔ HPb

HYSTERESIS

(available only with ON/OFF – CntF = onOF (group miSC of configuration))

Upper display → HYS1
Lower display → Actual Value for ON/OFF

Range

0.1% ↔ 10.0% of span or 1LSD
INTEGRAL TIME
(available only with PID or PI - CntF <> onoF (group miSC of configuration))

Upper display → ti1
Lower display → Actual Value

Range
00.01 ↔ 20.00 mm.ss

Beyond the maximum value, the display of the integral action is excluded.

With selftune activated, the lower limit is given by Lti

DERIVATIVE TIME
(available only with PI - CntF = Pi (group miSC of configuration))

Upper display → td
Lower display → Actual Value

Range
00.01 ↔ 10.00 mm.ss

With selftune activated, the derivative time is equal to ti / 4

INTEGRAL PRELOAD
(available only with PID or PI - CntF <> onoF (group miSC of configuration))

Upper display → iP1
Lower display → Actual Value

Range

With O2Fn ≠ Cool
0 ↔ 100

With O2Fn = Cool
-100 ↔ 100
RELATIVE COOLING GAIN

(available only with PID or PI - CntF <> onoF (group miSC of configuration))

Upper display \rightarrow rC1
Lower display \rightarrow Actual Value

Range

$0.20 \leftrightarrow 1.00$

When selftune is active and rCEn = On the range become

PAL = AIr
$0.85 \leftrightarrow 1.00$

PAL = OIL
$0.80 \leftrightarrow 0.90$

PAL = H2O
$0.30 \leftrightarrow 0.60$

DEAD BAND/OVERLAP TRA HEATING/COOLING OUTPUT

(available only with PID or PI - CntF <> onoF (group miSC of configuration)) e con

o2Fn = Cool)

Upper display \rightarrow oLAP1
Lower display \rightarrow Actual Value

Negative value indicates the dead band, positive value indicates the overlap.

Range

$-20 \leftrightarrow 50$

14.9 Group P_{AL2} (Pallet 2 control parameters)

See group 1

14.10 Group P_{AL3} (Pallet 3 control parameters)

See group 1