USER'S MANUAL Rev. 11/2020 010 _ from 60A to 90A 2019-2020 Version M-RX2-60-90 #### CD Automation S.r.l. Via Picasso, 34/36 - 20025 Legnano (MI)- Italy Tel. +39 0331 577479 - Fax +39 0331 579479 E-mail: info@cdautomation.com - Web: www.cdautomation.com # Declaration of conformity-Dichiarazione di Conformità ### PRODUCT MANUFACTURER / PRODUTTORE: #### **CD Automation S.R.L.** Controllers, Drives & Automation Via Picasso, 34/36 - 20025 Legnano (MI)- Italy P.I. 08925720156 -Tel. +39 0331 577479 - Fax +39 0331 579479 E-mail: info@cdautomation.com - Web: www.cdautomation.com ## Declare that the product / Dichiara che il prodotto: # **REVEX 2Ph 60-90A** PRODUCT DESCRIPTION: Electric power control SCOPE OF APPLICATION: Thermal control process DESCRIZIONE DEL PRODOTTO: Unità di controllo potenza elettrica UTILIZZO: Controllo processi termici #### FULFILS THE REQUIREMENTS OF THE STANDARD: Electrical safety Standard EN60947-1: 2007 + A1 2011, A2 2014 EN60947-4-3: 2014 Generic Emission standard EN60947-4-3: 2014 Group 1 Class A emissions Generic Immunity standard EN60947-4-3: 2014 Industrial Immunity ## SODDISFA I REQUISITI DELLA NORMA: EN60947-1: 2007 + A1 2011, A2 2014 Specifica di sicurezza EN60947-4-3: 2014 Specifica sulle emissioni EN60947-4-3: 2014 gruppo 1 emissioni classe A Specifica sulle Immunità EN60947-4-3: 2014 Immunità industriale CDAutomation declares that the products above mentioned are conforming to the directive CDAutomation dichiara che i prodotti sopra menzionati sono conformi alla direttiva Alla direttiva Bassa Tensione (low Voltage) EMC directive updated 2014/30/EU, Low Voltage Directive updated 2014/35/EU Issued on: 20/03/2017 Data di emissione: 20/03/2017 Amministratore Uniço e egale Rappresentante -Simone Brizzi # **Important warnings for safety** This chapter contains important information for the safety. The not observance of these instructions may result in serious personal injury or death and can cause serious damages to the Thyristor unit and to the components system included. The installation should be performed by qualified persons. In the manual are used symbols to give more evidence at the notes of safety and operativity for the attention for the user: This icon is present in all the operational procedures where the Improper operation may result in serious personal injury or death by Electrical Shock Hazard Symbol (a lightning bolt in a triangle) precedes an electric shock hazard CAUTION or WARNING safety statement. Warning or Hazard that needs further explanation than the label on unit can provide. Consult User's Guide for further information. Unit is compliant with European Union directives. See Declaration of Conformity for further details on Directives and Standards used for Compliance. ESD Sensitive product, use proper grounding and handling techniques when installing or servicing product. Do not throw in trash, use proper recycling techniques or consult manufacturer for proper disposal. A "NOTE" marks a short message to alert you to an important detail. A **"CAUTION"** safety alert appears with information that is important for protecting your equipment and performance. Be especially careful to read and follow all cautions that apply to your application. A **"WARNING"** safety alert appears with information that is important for protecting you, others and equipment from damage. Pay very close attention to all warnings that apply to your application. # Safety notes **WARNING!** To avoid damage to property and equipment, injury and loss of life, adhere to applicable electrical codes and standard wiring practices when installing and operating this product. Failure to do so could result in damage, injury and death. **AVERTISSEMENT!** Pour éviter d'endommager la propriété et l'équipement, les blessures et la perte de vie, respecter les codes électriques en vigueur et les pratiques de câblage standard au moment de l'installation et de l'utilisation de ce produit. Dans le cas contraire, cela peut entraîner la mort, des blessures graves ou des dommages. **WARNING!** All service including inspection, installation, wiring, maintenance, troubleshooting, fuse or other user serviceable component replacement must be performed only by properly qualified personnel. Service personnel must read this manual before proceeding with work. While service is being performed unqualified personnel should not work on the unit or be allowed in the immediate vicinity. **AVERTISSEMENT!** Tous les services, y compris l'inspection, l'installation, le câblage, l'entretien, le dépannage, le remplacement de fusibles ou d'autres composants pouvant être réparés par l'utilisateur, doivent être effectués uniquement par un personnel diment qualifié. Le personnel de service doit lire ce manuel avant d'effectuer tout travail. Pendant que l'entretien est exécuté, tout personnel non qualifié ne doit effectuer de travail sur l'appareil ni se trouver a proximité. **WARNING!** When in use the power controller is connected to dangerous voltages. Do not remove the protective covers without first disconnecting and preventing power from being restored while servicing the unit. **AVERTISSEMENT!** Au moment de l'utilisation, le régulateur de puissance est connecté a des tensions dangereuses. Ne retirer aucun couvercle de protection sans d'abord débrancher l'appareil et ainsi empêcher l'alimentation d'être rétablie pendant l'entretien. **WARNING!** Do not use in aerospace or nuclear applications. **WARNING!** The units are not developed to manage capacitive loads. AVERTISSEMENT! Les unités ne sont pas développées pour la conduite de charges capacitives. **WARNING!** The power controller's protection rating is IP20 with all covers installed and closed. It must be installed in an enclosure that provides all the necessary additional protections appropriate for the environment and application. **AVERTISSEMENT!** L'indice de protection du régulateur de puissance est de IP20 lorsque les couvercles sont installés et fermés. L'appareil doit être installé dans une enceinte qui assure toute la protection supplémentaire nécessaire pour l'environnement et l'application. **WARNING!** Ground the power controller via the provided protective earth grounding terminal. Verify ground is within impedance specifications. This should be verified periodically. **AVERTISSEMENT!** Mise a la terre du régulateur de puissance par le biais de la borne de prise de terre de protection fournie. Vérifier que la prise de terre est conforme aux spécifications de l'impédance. Cela doit être vérifié périodiquement. **WARNING!** Electric Shock Hazard: when the power controller has been energized, after shutting off the power, wait at least one minute for internal capacitors to discharge before commencing work that brings you in to contact with power connections or internal components. **AVERTISSEMENT!** Risque de décharges électriques: lorsque le régulateur de puissance est mis sous tension, après avoir été éteint, attendre au moins une minute pour que les condensateurs internes se déchargent avant de commencer tout travail incluant le contact avec les connexions électriques ou les composants internes. **WARNING!** The installation must be protected by electromagnetic circuit breakers or by fuses. The semiconductor fuses located inside the power controller are classified for UL as supplementary protection for semiconductor devices. They are not approved for branch circuit protection. **AVERTISSEMENT!** L'installation doit être protégée par des disjoncteurs électromagnétiques ou des fusibles. Les fusibles pour semi-conducteurs situés a l'intérieur du régulateur de puissance sont classés UL comme protection supplémentaire pour les dispositifs pour semi-conducteurs. Ils ne sont pas approuvés pour la protection des circuits de dérivation. **WARNING!** When making live voltage or current measurements, use proper personal protective equipment for the voltages and arc-flash potentials involved. **AVERTISSEMENT!** Au moment de relever des mesures de tension ou de courant en direct, utiliser un équipement de protection individuelle approprié pour les tensions et les potentiels d'arc électrique concernés. **WARNING!** Verify the voltage and current ratings of the power controller are correct for the application. **AVERTISSEMENT!** Vérifier que les valeurs de tension et de courant du régulateur de puissance sont correctes pour l'application. **CAUTION:** To avoid compromising the insulation, do not bend wire or other components beyond their bend radius specifications. **ATTENTION:** Pour éviter de compromettre l'isolation, ne pas plier le fil ou tout autre composant au-delà de ses spécifications en matière de rayon de courbure. **CAUTION:** Protect the power controller from high temperature, humidity and vibrations. **ATTENTION:** Protéger le régulateur de puissance contre les températures élevées, l'humidité et les vibrations. **CAUTION:** The power controller warranty is void if the tested and approved fuses are not used. **ATTENTION:** La garantie du régulateur de puissance est nulle si aucun fusible testé et approuvé n'est utilisé. **CAUTION:** Only trained and authorized personnel should access and handle the internal electronics and they must follow proper electro-static prevention procedures. **ATTENTION:** Seul le personnel formé et autorisé peut accéder aux composants électroniques internes et les gérer, et il doit se conformer a des procédures de prévention électrostatique appropriées. **CAUTION:** Install an appropriately sized RC filter across contactor coils, relays and other inductive loads. **ATTENTION:** Installer un filtre RC de dimensions appropriées sur les bobines du contacteur, les relais et autres charges par induction. **CAUTION:** The thyristor units here described have been designed for use with sinusoidal networks with nominal frequency 50-60 Hz. Any application with NON-SINUSOIDAL, distorted or disturbed networks could compromise the correct
operation of the unit. **ATTENTION:** Les unités de thyristors décrites ici ont été conçues pour être utilisées avec des réseaux sinusoïdaux d'une fréquence nominale de 50 à 60 Hz. Toute application utilisant des réseaux NON SINUSOÏDAUX, déformés ou perturbés peut compromettre le bon fonctionnement de l'appareil. NOTE: Provide a local disconnect to isolate the power controller for servicing. **REMARQUE:** Fournir une déconnexion locale afin d'isoler le régulateur de puissance pour l'entretien. **NOTE:** The nominal current is specified for ambient temperatures at or below 40° C. Ensure the application design allows for adequate cooling of each power controller. The power controller must be mounted vertically. The cooling design must prevent air heated by one power controller from causing power controllers mounted above to exceed the ambient operating temperature limit. When power controllers are mounted side by side allow a minimum spacing of 15mm between them. **REMARQUE:** Le courant nominal est précisé pour des températures ambiantes égales ou inférieures a 40°C. S'assurer que la conception de l'application permette le refroidissement adéquat de chaque régulateur de puissance. Le régulateur de puissance doit être monté verticalement. La conception de refroidissement doit empêcher l'air chauffé par le régulateur de puissance de dépasser la limite de température de fonctionnement ambiante de la part des régulateurs de puissance montés au-dessus. Lorsque les régulateurs de puissance sont montés côte a côte, il faut conserver un espacement minimal de 15 mm entre les deux. **NOTE:** Use only copper cables and wires rated for use at 90°C or greater. **REMARQUE:** N'utiliser que des cables et des fils en cuivre pour l'utilisation a 90°C ou plus. In order to have a corrected cooling, the user must clean the heat-sink and the protective grill of the fans. The frequency of this servicing depends on environmental pollution. Also check periodically if the screw for the power cables and safety earth are tightened correctly (See Connection Diagram). # Warranty condition Producer gives a 12 months warranty to its products. The warranty is limited to repairing and parts substitution in our factory and does exclude products not properly used and fuses. Warranty does not include products with serial numbers deleted. The faulty product should be shipped to Producer at customer's cost and our Service will evaluate if product is under warranty terms. Substituted parts remain of Producer property. # **Return Material Authorization (RMA)** Customers wishing to return any items, whether they are incorrectly supplied, faulty or damaged in transit, must first complete a Return Material Authorisation (RMA) form to obtain an RMA number from the Service Department. A full repair service is available for customers. Prior to submitting the RMA form and returning products, customers are recommended to contact the technical support team to determine whether the issue can be resolved with telephone support. #### How the RMA service works The RMA form and details are available on our web sites: #### https://www.cdautomation.com/returns-material-authorisation/ When completing the RMA form, please be as specific as possible about the problem, including any pertinent application details. The more information given, the more quickly and more thoroughly the problem can be solved. The minimum information required is: - 1. The Full Model Number - 2. Quantity of units being returned - 3. The units Serial Number(s) - 4. A description of the problem ("faulty" or "unknown" is not sufficient) # Summary | | Declaration of conformity | |---|---| | | Important warnings for safety | | | Maintenance | | 1 | Introduction | | | 1.1 Overview | | 2 | Software Configurator | | 3 | Quick Start | | 4 | Basic Connections and sizing | | 5 | Identification and Order Code | | | 5.1 Identification of the unit | | | 5.2 Order Code | | 6 | Technical Specifications | | | 6.1 General features | | | 6.2 Input features | | | 6.3 Output features (power device) | | | 6.4 Environmental installation conditions | | | 6.5 Fan Specification | | | 6.6 Derating Curve | | | 6.7 Calculating flow capacity of the fan | | 7 | Installation | | | 7.1 Dimensions and weight | | | 7.2 Fixing holes | | 8 | Wiring instructions | | | 8.1 Command Terminals | | | 8.2 Schematic | | | 8.3 Connection Diagram | | 9 | Control Panel | | | 9.1 Menu navigation | | | 9.2 Led indicators | | | 9.3 Displayed alarms | | | 9.4 Parameter list | | 10 | Using the Configurator | 0. | |----|---|------------| | | 10.1 Typical Uses | ļΟ | | | 10.2 Communicating with Power Controllers | ļ.O | | | 10.3 Recipes | ļ.O | | | 10.4 How to | ļ.O | | | 10.5 Using the Configurator | ļ2 | | | 10.6 Software General information | 14 | | 11 | Firing type5 | 0 | | | 11.1 Zero Crossing | ; 0 | | | 11.2 Burst Firing | ;0 | | 12 | Control Mode (feed-back) | ;1 | | 13 | Electronic boards | ;2 | | | 13.1 Supply the Electronic Board | 52 | | 14 | RS485 Serial port | 3 | | | 14.1 FIELD BUS Module | 53 | | 15 | Internal Fuse | 4 | # 1 Introduction A thyristor unit is semiconductor device which acts as a switch formed by two thyristors in antiparallel. To switch on the alternating current the input signal will be on and the thyristor will switch off at first Zero Crossing voltage with no input signal. The benefits of thyristor units compared with elettromechanical contactors are numerouses: no moving parts, no maintenance and capacity to switch very fast. Thyristors are the only solution to control transformers and special loads that change resistance with temperature and with age. #### 1.1 Overview #### Current transformer and user interface - Saves installation time and eases setup and commissioning. - · Delivers a user-friendly, intuitive interface. ## Industry-leading design and serviceability - Offers a robust SCR design to meet a rugged industrial environment's high quality and reliability needs. - · Provides quick and easy access to maintain and service fuses and individual legs in minimal time. - Enables fast troubleshooting by providing helpful thermal system diagnostics. ## Comprehensive power controller range Provides wide range of options from simple single phase to complex three-phase loads to 600V. #### 100kA short circuit current rating (SCCR) (Not reviewed by UL®) Enables greater protection in the event of a short circuit. #### c-UL® 508 Listed - PRELIMINARY, to be tested Shortens project schedules, agency testing and expenses. #### Control modes: contactor, voltage, current or power Satisfies a wide range of demanding thermal applications. #### Load firing modes: zero-cross, burst fire - Handles a wide range of load types including nichrome, medium and long waveform infrared lamps, moly, transformers, silicon carbide, UV lamps and tungsten. - Protects and extends the life of connected loads. ### Wide range of communication protocols • Enable factory and process automation with connectivity to process and equipment data via Modbus® RTU. Modbus® TCP, Profibus, Profinet (available with external master communication module). #### Open heater and shorted SCR indication Minimizes production downtime with easy to understand, intelligent, troubleshooting diagnostics. ### Integrated USB and user interface for configuration - Easily and safely program configuration settings as the user interface can be powered through USB connection. - Eliminates need to work in a high voltage hazard environment. High voltage to the power controller and system panel can be shut off and locked out for safety while configuring controller. # **Software Configurator** Thyristor configurator software is free and is possible download it from our site. If the Order Code is in line with requirement, then unit has been already configured in Factory and it's ready to use. You need the software only to modify the ordered configuration. Anyway we suggest to check the unit on the machine with the "Test unit" section. For install the software, launch the program and follow the instructions on the screen. Run the software configurator and set the correct serial port number by menu setting-serial com – port number. ## Software Configurator download link: https://www.cdautomation.com/download/cd-automation/software/ThyristorConfigurator_ver6.exe # **3** Quick Start Attention: this procedure must be carried out by skilled people only. If your REVEX code is in line with what you really need, then the main configuration is already done by Producer and you just need to do the following steps: - 1. Verify REVEX current sizing. Be sure that: - the load current is equal or less than the nominal one of REVEX - the main voltage is equal or less than the nominal voltage of REVEX - 2. Verify the Installation - 3. Verify the Wiring: - · all auxiliary connections must be done in line with wirings on this manual - · verify that there isn't a short circuit on the load - 4. Supply the Unit - 5. Set the parameters Operative Load Voltage and Nominal Current of the load by: - **a.** REVEX Display version (Standard version or Option code 0/4/5/6 on Digit 12) using the frontal keypad --> Operator menu or Thyristor configurator software - **D. REVEX NO Display version (Option code 1/2/3/7 on Digit 12)** using Thyristor configurator software #### The Unit is ready to work The auxiliary voltage supply of the REVEX unit must be synchronized with load voltage power supply. If the Auxiliary Voltage (written on the identification label) is different from Supply Voltage (to the load), use an external transformer. #### **IMPORTANT** Starting Strategy (Enable): - 1: Feed the unit with L1-L2-L3 power voltage supply - 2: Feed the auxiliary supply - 3: Close the Enable contact to start with the regulation If your REVEX code is NOT in line with what you really need, use the configurator software tool to set-up
the unit. Install the software on your PC, select REVEX and click on test unit changing what you need. # **Basic Connections and sizing** Star wiring with resistive load (control on two phases) $$I = \frac{P}{1,73V}$$ - V = Nominal voltage of the load - I = Nominal current of the load - P = Nominal power of the load # Delta wiring with resistive load (control on two phases) $$I = \frac{P}{1,73V}$$ - V = Nominal voltage of the load - I = Nominal current of the load - P = Nominal power of the load # **Identification and Order Code** # 5.1 Identification of the unit **Caution:** Before to install, make sure that the Thyristor unit have not damages. If the product has a fault, please contact the dealer from which you purchased the product. The identification label give all the information regarding the factory settings of the Thyristor unit, this label is on the unit, like represented in figure. Verify that the product is the same thing as ordered. Q Α W ## 5.2.1 Option Code for Digit 12 Voltage Square External feedback Current Current Square Power VxI | Heater Break | Fuse | Display | Option Code | |--------------|------|---------|-------------| | Υ | Υ | Υ | 0 | | Υ | Υ | N | 1 | | Υ | N | N | 2 | | N | N | N | 3 | | Υ | N | Υ | 4 | | N | N | Υ | 5 | | N | Υ | Υ | 6 | | N | Υ | N | 7 | # **Technical Specifications** #### 6.1 General features Cover and Socket material: PolymericV2 Utilization Category: AC-51 AC-55b AC-56A IP Code: Method of Connecting: Load in Delta, Load in Star Auxiliary voltage Order Code RX2___-4: 24Vdc 1A Relay output for Heater Break Alarm 0.5A a 24Vac/dc (only with HB option) 6.2 Input features Digital Input: 4 ÷ 30Vdc 5mA Max (ON ≥4Vdc OFF <1Vdc) 5Hz max Volt Analogic input: $0 \div 10 \text{Vdc impedance } 15 \text{ k}\Omega$ Current Analogic input: $4 \div 20 \text{mA impedance } 100 \Omega$ Potentiometer: 10 k Ω min. Logic input SSR (Fast Enable): 4 ÷ 30Vdc 5mA Max (ON ≥4Vdc OFF <1Vdc) 3Hz Max duty cycle min. 100 ms # 6.3 Output features (power device) | Current | Nominal
Voltage range
(Ue) | Repetitive peak
reverse voltage
(Uimp) | Latching
current | Max peak
one cycle | Leakage
current | FUSE I2T
value
Suggested
A2s
(at500V) | Frequency range | Power loss
Thyristor +
Fuse | Isolation
Voltage
(Ui) | |---------|----------------------------------|--|---------------------|-----------------------|--------------------|---|-----------------|-----------------------------------|------------------------------| | (A) | (V) | (600V) | (mAeff) | (10 msec.)
(A) | (mAeff) | tp=
10msec | (Hz) | I =Inom (W) | (Vac) | | 60 | 24÷600 | 1600 | 600 | 1900 | 15 | 4305 | 47÷70 | 102 | 3000 | | 90 | 24÷600 | 1600 | 600 | 1900 | 15 | 4305 | 47÷70 | 145 | 3000 | # 6.4 Environmental installation conditions Ambient temperature 0-40°C (32-104°F) at nominal current. Over 40°C-104°F use the derating curve. Storage temperature -25°C to 70°C -13°F to 158°F Installation place Don't install at direct sun light, where there are conductive dust, corrosive gas, vibration or water and also in salty environmental. Altitude Up to 1000 meter over sea level. For higher altitude reduce the nominal current of 2% for each 100m over 1000m Humidity From 5 to 95% without condense and ice Pollution Level Up to 2nd Level ref. IEC 60947-1 6.1.3.2 6.5 Fan Specification Supply: 24 Vdc Power 7W (1 Fan) # 6.6 Derating Curve The nominal current of the units in specification are referred to continuous service at 40°C ambient temperature. For higher temperature multiply the nominal current times derating coefficient K below represented: # 6.7 Calculating flow capacity of the fan All the thyristor units when are in conduction produces power loss that is dissipated inside cubicle in terms of heating. Due to this fact the internal temperature of cubicle is higher than ambient temperature. To be cooled the thyristor need of fresh air cooling and to do it is normally used a fan mounted on the front door or on the roof of the cabinet. Procedure to size **Fan air mass flow (V)**: see power loss for each thyristor and fuse mounted indicated in the manual related to the current (Output feature and Internal fuse Chapter). | V=f* Qv
tc-ta | Qv = total power losses (w) | Altitude 0:100 meters f = 3.1 m3k/Wh 100:250 meters f = 3.2 m3k/Wh 250:500 meters f = 3.3 m3k/Wh 500:750 meters f = 3.4 m3k/Wh | |------------------|-----------------------------|--| |------------------|-----------------------------|--| The formulas used are for information only and is not a substitute for a proper thermal rating done by a qualified person. # 7 Installation Before to install, make sure that the Thyristor unit have not damages. If the product has a fault, please contact the dealer from which you purchased the product. Verify that the product is the same thing as ordered. The Thyristor unit must be always mounted in vertical position to improve air cooling on heat-sink. Maintain the minimum distances (*) in vertical and in horizontal as represented, this area must be free from obstacle (wire, copper bar, plastic channel). When more unit has mounted inside the cabinet maintain the air circulation like represented in figure without obstacle for the air flow Is necessary to install a fan to have better air circulation as calculated previously. The V Air flow must be equal or more than the value calculated. If the cabinet fan mounted by the customer have an air flow lower than the correct value the warranty will decay. # 7.1 Dimensions and weight Size: SR25 (2PH) W (mm): 116 H (mm): 180 D (mm): 183 Weight (kg): 2,35 # 7.2 Fixing holes # Wiring instructions The Thyristor unit could be susceptible to interferences lost by near equipments or by the power supply, for this reason in accord to the fundamental practices rules is opportune take some precautions: - · The coil contactor, the relays and other inductive loads must be equipped with opportune RC filter. - · Use shielded bipolar cables for all the input and output signals. - The signal cables must not be near and parallel to the power cables. - · Local regulations regarding electrical installation should be rigidly observed. Use 90°C copper (CU) conductor only, wire ranges (AWG), wire terminal type (ZMVV), terminal tightening torque in the table below. ## Power cable torque (suggested) | Туре | Connector | Torque Lb-in | Wire Range | MAX Current | Wire Terminals UL | |------------|-----------|--------------|------------------|-------------|--| | | Type | (N-m) | mm² (AWG) | Terminals | Listed (ZMVV) | | 060
090 | Screw M6 | 44.2 (5.0) | 18 (5)
25 (3) | 90A | Fork/Spade
Terminal
Copper Tube
Crimp.Lug | | Cable dimensions of the Command Terminals | 0.5 mm² (AWG 18) | |---|------------------| | Cable dimensions of the Earth (suggested) | 6 mm² (AWG 10) | **Warning**: Before connecting or disconnecting the unit check that power and control cables are isolated from voltage sources. | Terminal | Description | |----------|---------------------| | L1 | Line Input Phase 1 | | L3 | Line Input Phase 2 | | T1 | Load Output Phase 1 | | Т3 | Load Output Phase 2 | # **8.1 Command Terminals** **Warning:** Before connecting or disconnecting the unit check that power and control cables are isolated from voltage sources. # 8.1.1 Terminal block M1 | Terminal | Description | |----------|--| | Sync. | Zero crossing syncronization | | Sync. | Zero crossing syncronization (not connected, see note below) | Note: both terminals are connected internally and may be possible to use any one of them. ## 8.1.2 Terminal block M2 | Terminal | Description | |----------|---| | 8 | GND | | 9 | COM I - Common Digital Input | | 10 | DI 2 - Enable Digital Input | | 11 | DI 1 - Configurable Input | | 12 | + Analog Input 1 (0-10Vdc/4-20mA Analog Setpoint) | | 13 | - for Analog Input 1 and Analog input 2 – 0 Volt | | 14 | Output +10Vdc stabilized 1 mA MAX | | 15 | + Analog Input 2 (0-10Vdc/4-20mA Analog Setpoint) | # 8.1.3 Terminal block M3 | Terminal | Description | |----------|---| | 1 | Auxiliary - 24Vdc 1A Input power supply for communication | | 2 | Auxiliary + 24Vdc 1A Input power supply for communication | | 3 | RS485 A+ | | 4 | RS485 B- | | 5 | C - Common contact alarm relay output | | 6 | NO - Normally Open contact alarm relay output (SC/HB) | | 7 | NC - Normally Close contact alarm relay output (SC/HB) | ### 8.2 Schematic ## NOTE: - *1 The user installation must be protecting by electromagnetic circuit breaker or by fuse isolator. The Fuse must be branch circuit protection. - *2 Synchronization signal, factory connection. ATTENTION HIGH VOLTAGE! 4 Both terminals are connected internally. - *3 For SSR input connection follow next page schematic. - *4 IMPORTANT! Starting Strategy (Enable): - 1: Feed the unit with L1-L2-L3 power voltage supply - 2: Feed the auxiliary supply - 3: Close the Enable contact to start with the regulation. # 8.2.1 SSR Control Input schematic For SSR input use follow the schematic below and configure Digital Input 1 as Fast Enable. * SSR Input: 4 ÷ 30Vdc 5mA Max (ON ≥4Vdc OFF <1Vdc) 3HZ Max on time min. 100 ms # **TOP VIEW** # **DOWN VIEW** # **8.3 Connection Diagram** #### NOTE: - *1 The user installation must be protecting by electromagnetic circuit breaker or by fuse isolator. The Fuse must be branch circuit protection. - *2 Synchronization signal, factory
connection. ATTENTION HIGH VOLTAGE! 4 Both terminals are connected internally. # Control Panel Display and Keys are Not present for Option Codes: 1/2/3/7 (see table pag. 15) The Control Panel is placed on the front of the thyristor unit, on his display you can visualize the alarms, the input and output signals and all the configuration parameters. Output Voltage (RMS) Output Power (Average) Alarms # On the home page the keys are used as follows: | Press | | to | |-------|--------------|--| | F | Function | Scroll through the parameters on the home page | | L/R | Local/Remote | Switch between local and remote set point for power demand | | | Up | Increment power demand set point when set to local | | | Down | Decrement power demand set point when set to local | | F | + L/R | Press and hold for about two seconds to access the menus | #### To view the status parameters: #### To set the set point locally: - Press Local/Remote L/R (Note: indicator 1 flashes steadily when set point is set locally) - Use Down and/or Up to set the local set point. # 9.1 Menu navigation The menus are accessible using the control panel keypad and display. Control Panel Display and Keys are Not present for Option Codes: 1/2/3/7 (see table pag. 15) ## To access a menu and edit a setting: - 1. Press and hold Local/Remote and Function together L/R + F until the upper display flashes Menu. - 2. Press Up ____ to choose the menu. (Press down ____ if you overshoot the menu you want). - 3. Press function **F** to advance to the password prompt. - 4. Use up and/or down to set the password (see the table). - 5. Press function **F** to enter the password and advance to the first parameter of the menu. - 6. Press Up to advance to the next parameter and repeat to reach the desired parameter. - 7. Press function F to start editing the parameter. The parameter name flashes in the upper display. - 8. Use Up and/or down to edit the parameter setting. - 9. Press function **F** to enter the new setting. The parameter name stops flashing. - 10. Press and hold local/remote and function together L/R + F for about two seconds to exit the menus. | Menu | Password | Parameter used to | |------------|----------|---| | Operator | 0 | View measured values and basic settings including current, voltage and set point | | Setup | 2 | Configure the power controller for the load | | Adv Setup | 10 | Configure the operation and performance of the power controller in the application | | Hardware | 5 | Configure the functions of the analog and digital inputs and outputs, and the retransmission parameters | | Comm | 3 | Configure field bus communicating parameters | | Monitoring | 0 | View measured and calculated values and other read-only parameters | # 9.2 Led indicators The four indicators on the control panel show the general state of the power controller. | <u>REVEX</u> | |----------------------| | Aux High
SP 100% | | ■1 ■2 ■3 ■4
•~• Û | | L/R F | | | Power output set locally or Flashing via communications Local/Remote 1 Power output set remotely Off (via analog input) On Output enabled Enable 2 Off Output disabled Communications Flashing Active communications 3 Active alarm* Flashing Alarm 4 Off No alarm without display Option code: 1/2/3/7 on digit 12 with display Option code: 0/4/5/6 on digit 12 *In the version without display, Led 4 lit indicates that one of the alarms shown in the table below is active. Connect the configurator and check on the Test page which alarm is active. # 9.3 Displayed alarms Control Panel Display and Keys are Not present for Option Codes: 1/2/3/7 (see table pag. 15) | Alarm | Description | |---------------|---------------------------------| | HeatBrk | Heater Break (if available) | | Aux High | Aux voltage too high | | Aux Low | Aux voltage too low | | Comerror | Communication Watchdog error | | Aux Line Loss | Auxiliary voltage not detected | | Line Loss | Line power not detected | | SHRT | Short Circuit on SCR | | SCR Temp | Thermal Switch over temperature | (i) If you have the version without display, all the functions shown on the display can be viewed via the configurator # 9.4 Parameter list Control Panel Display and Keys are Not present for Option Codes: 1/2/3/7 (see table pag. 15) This chapter describes the parameter on the menus accessed via the control panel and Configurator software. To learn how to access the menus described below see "Menu navigation" chapter. # **Menu Listing** The table below lists the parameters found on each menu. See the following pages for descriptions and other details of each parameter. | Operator | Setup | Advanced Setup | Hardware | Communication | Monitoring | |------------|------------|----------------|-------------|---------------|-------------| | Set Point | Out Scale | Firing Type | Analog in 1 | Port 1 Baud | Dig in 1 | | Volts Out | Nom Line V | Min Cycle | Analog in 2 | Port 1 Addr | Dig in 2 | | Current | Nominal I | Cycle Time | An2 Funct | Port 2 Baud | Enable | | Power | SP Select | Feedback | DI1 Functn | Watchdog | SP Source | | Volts In | | Pb Power | DI2 Functn | WD Reset | Analog In1 | | Frequency | | Ti Power | Alm Out Fn | Port 2 | Analog In2 | | Pwr Factor | | HB Sense | Start Disp | | SW Ver | | Load Q | | HB Delay | | | SW Rel | | Out Scale | | | | | Unit Type | | Nom Line V | | | | | Max Voltage | | Nominal I | | | | | Max Current | | | | | | | Aux Voltage | | | | | | | Serial No. | | | | | | | SCR Temp | | Read/write | Read only | / | | 1 | | # 9.4.1 Operator Menu This section describes each item on the operator menu. Use this menu to view the measured values and basic settings of the power controller. **The password to access this menu is 0.** | Parameter Name | Description | Range | Unit | Modbus
Address | Par.
Type | |----------------|--|-------------|------|-------------------|--------------| | Set Point | View the set point | 0 to 100 | % | 15 | Read
Only | | Volts Out | Indicates the average (RMS) voltage of all phases | 0 to 1023 | V | 10 | Read
Only | | Current | Indicates the average (RMS) current of all phases | 0 to 1023 | V | 11 | Read
Only | | Power | Indicates the average (RMS) power output | 0 to 100 | % | 12 | Read
Only | | Volts In | Indicates the average (RMS) voltage input | o to 65535 | V | 47 | Read
Only | | frequency | Indicates frequency of the power input | o to 655.35 | Hz | 9 | Read
Only | | Pwr factor | Indicates power factor of the output power | 0 to 1000 | | 102 | Read
Only | | Load Ω | Indicates the resistance of the load | o to 655.35 | Ω | 46 | Read
Only | | Out Scale | Indicates the percentage by which the power demand set point is scaled | 0 to 100.0 | % | 16 | Read
Only | | Nom Line V | Indicates the user-set, nominal value for the line voltage input | 0 to 1023 | V | 37 | Read
Only | | Nominal I | Indicates the user-set, nominal load current | o to 999.9 | А | 38 | Read
Only | # 9.4.2 Setup Menu This section describes each item on the setup menu. Use this menu to configure the power controller for the load. **The password to access this menu is 2.** | Parameter Name | Description | Range | Unit | Modbus
Address | Par.
Type | |----------------|--|------------|------|-------------------|---------------| | Out Scale | Set the percentage by which the set point is scaled. For example, if a 0 to 10V analog input providing the set point is 5V and output scaling is 80% then the effective set point is 40% | 0 to 100 0 | % | 16 | Read
Write | | Parameter Name | Description | Default | Range | Unit | Modbus
Address | Par.
Type | |----------------|--|--------------------|------------|------|-------------------|---------------| | Nom Line V | Set the nominal value for the line voltage input | 220V | 0 to 1023 | V | 37 | Read
Write | | Nominal I | Set the nominal load current | Maximum
current | o to 999.9 | А | 38 | Read
Write | | SP select | Choose the source for the remote set point | 0 | | | 61 | Read
Write | | Option | Value | |-------------|-------| | Analog In 1 | 0 | | Analog In 2 | 1 | # 9.4.3 Advanced Setup Menu This section describes each item on the advanced setup menu. Use this menu to configure the power switching, closed loop control of power and adjustable settings for data logging and heater bakeout. **The password to access this menu is 10.** | Parameter Name | Description | Default | Modbus
Address | Par.
Type | |----------------|------------------------|---------|-------------------|---------------| | Firing Type | Choose the firing mode | 3 | 18 | Read
Write | | Option | Value | |----------------------------|-------| | Zero Cross | 1 | | Burst fire | 3 | | DEFAULT: Burst Fire | 3 | | Parameter Name | Description | Default | Range | Unit | Modbus
Address | Par.
Type | |----------------|--|---------------|--------------------------------|------|-------------------|---------------| | Min Cycles | Set the minimum number of On cycles and off cycles for burst firing | 8 | o to 999.9 | n° | 20 | Read
Write | | Cycle time | Set the duration of one on-off cycle in increments of 50mSec. Applies to zero crossing | 60
(3 sec) | 0 to 255
0 to 12,75
sec) | | 24 | Read
Write | | Feedback | Choose the feed-back type | 1 | | | 19 | Read
Write | | Option | Description | Value | |-----------------------|------------------------------------|-------| | N _S | Voltage squared | 0 | | None | No feed-back |
1 | | l _s | Current squared | 2 | | Voltage | Voltage | 32 | | Current | Current | 64 | | Power | Power | 128 | | External | External signal via analog input 2 | 256 | | DEFAULT : None | | 1 | | Parameter Name | Description | Default | Range | Unit | Modbus
Address | Par.
Type | |----------------|--|-----------------|---------------------------------|------|-------------------|---------------| | Pb Power | Set the gain for the main loop. A larger value yields a larger adjustment for a given deviation | 10% | 0 to 255 | % | 26 | Read
Write | | Ti Power | Set how aggressively the integral part
of the control algorithm acts. A larger
settings yields a larger adjustment for
a given deviation over a given time | 50 | 0 to 255 | | 27 | Read
Write | | HB Sense | Set the threshold of resistance that
activates the Heater Break alarm. This
setting is in percentage of the nominal
load resistance | 100% | 0 to 100.0 | % | 29 | Read
Write | | HB Delay | Set a delay between when the resistance drops below the value set for a heater break sensitivity and when the heater break alarm is indicated. This set increments of 50mSec | 50 (2,5
sec) | 0 to 255
(0 to 12,75
sec) | | 28 | Read
Write | # 9.4.4 Hardware Menu This section describes each item on the hardware menu. Use this menu to configure how the inputs and outputs are used in the application. **The password to access this menu is 5.** | Parameter Name | Description | Default | Modbus
Address | Par.
Type | |----------------|--|---------|-------------------|---------------| | Analog In 1 | Choose the type of signal to be measured by analog input 1 | 1 | 44 | Read
Write | | Option | Description | Value | |----------------|------------------------|-------| | 0-10V | 0 to 10 Vdc or 10,000Ω | 1 | | 4-20mA | 4 to 20 mAdc | 2 | | 0-20mA | 0 to 20 mAdc | 3 | | DEFAULT: 0-10V | | 1 | | Parameter Name | Description | Default | Modbus
Address | Par.
Type | |----------------|--|---------|-------------------|---------------| | Analog In 2 | Choose the type of signal to be measured by analog input 2 | 1 | 105 | Read
Write | | Option | Description | Value | |----------------|------------------------|-------| | O-10V | o to 10 Vdc or 10,000Ω | 1 | | 4-20mA | 4 to 20 mAdc | 2 | | 0-20mA | 0 to 20 mAdc | 3 | | DEFAULT: 0-10V | | 1 | | Parameter Name | Description | Default | Modbus
Address | Par.
Type | |----------------|--|---------|-------------------|---------------| | An2 Funct | Choose how the signal measured by analog input 2 is used | 1 | 116 | Read
Write | | Option | Description | Value | |--------------------------|----------------------------|-------| | Feedback | External feed-back | 1 | | Set Point | Power Demand set point | 2 | | DEFAULT: Feed-bad | DEFAULT : Feed-back | | | Parameter Name | Description | Default | Modbus
Address | Par.
Type | |----------------|---|---------|-------------------|---------------| | DI1 Functn | Choose how the signal detected by digital input 1 is used | 2 | 32 | Read
Write | | Option | Description | Value | |-------------|---|-------| | Enable | Enable power output | 0 | | V Feedback | Use voltage feed-back when on | 2 | | Local / Rmt | Local when on / Remote when off | 3 | | SP AI1/AI2 | Select remote set point source: analog input 1 when off or analog input 2 when on | 5 | | FastEn | Fast Enable* | 8 | | DEFAULT: Vo | bltage Feed-back | 2 | ^{*} SSR Input: 4 ÷ 30Vdc 5mA Max (ON ≥4Vdc OFF <1Vdc) 3HZ Max on time min. 100 ms | Parameter Name | Description | Default | Modbus
Address | Par.
Type | |----------------|---|---------|-------------------|---------------| | DI2 Functn | Choose how the signal detected by digital input 2 is used | 0 | 33 | Read
Write | | Option | Description | Value | |---------------------|---|-------| | Enable | Enable power output | 0 | | V Feedback | Use voltage feed-back when on | 2 | | Local / Rmt | Local when on / Remote when off | 3 | | SP AI1/AI2 | Select remote set point source: analog input 1 when off or analog input 2 when on | 5 | | FastEn | Fast Enable* | 8 | | DEFAULT : Er | nable | 0 | ^{*} SSR Input: 4 ÷ 30Vdc 5mA Max (ON ≥4Vdc OFF <1Vdc) 3HZ Max on time min. 100 ms | Parameter Name | Description | Default | Modbus
Address | Par.
Type | |----------------|---|---------|-------------------|---------------| | Alm Out Fn | Choose for which conditions the digital output indicates alarm. The output always indicate an alarm when the heat sink is over temperature. The digital output is energized for normal operating condition and de-energized when the power controller is off or when there is an alarm. Note!: The power controller monitors for heater break or short circuit condition only when included in the option selected for Alarm Output Function | 1 | 34 | Read
Write | | Option | Description | Bit | |---------------|------------------------------|------| | Heater Break | Heater Break | 0 | | Short Circuit | Short circuit | 1 | | Therm | SCR is over temperature | 3 | | Communication | Communication watchdog error | 4 | | DEFAULT | | None | Alarm Bitwise is allowed | Parameter Name | Description | Default | Modbus
Address | Par.
Type | |----------------|--|---------|-------------------|---------------| | Start Disp | Choose which parameter is displayed on the home page at power-up | 1 | 60 | Read
Write | | Option | Value | |-------------------------|-------| | Current | 0 | | Volts Out | 1 | | Power | 2 | | DEFAULT: Voltage | 1 | #### 9.4.5 Communication Menu This section describes each item on the communication menu. Use this menu to configure the communication options. **The password to access this menu is 3.** | Parameter Name | Description | Default | Modbus
Address | Par.
Type | |----------------|--|---------|-------------------|---------------| | Port 1 Baud | Choose the baud rate for the primary serial port | 2 | 30 | Read
Write | | Option | Value | |----------------|-------| | 9600 | 0 | | 19.2K | 1 | | 38.4K | 2 | | 115.2K | 3 | | DEFAULT: 38.4K | 2 | | Parameter Name | Description | Default | Range | Unit | Modbus
Address | Par.
Type | |----------------|--|---------|----------|------|-------------------|---------------| | Port 1 Addr | Set the address for the primary serial port | 1 | o to 255 | | 31 | Read
Write | | Port 2 Baud | Choose the baud rate for the primary serial port | 2 | | | 45 | Read
Write | | Option | Value | |----------------|-------| | 9600 | 0 | | 19.2K | 1 | | 38.4K | 2 | | 115.2K | 3 | | DEFAULT: 38.4K | 2 | | Parameter Name | Description | Default | Modbus
Address | Par.
Type | |----------------|---|---------|-------------------|---------------| | Watchdog | Enable or disable the watchdog on the primary serial port | 0 | 142 | Read
Write | | Option | Value | |---------------------|-------| | Off | 0 | | On | 1 | | DEFAULT: Off | 0 | | Parameter Name | Description | Default | Range | Unit | Modbus
Address | Par.
Type | |----------------|--|---------|----------|------|-------------------|---------------| | WD Reset | Set the amount of time to wait for
a message before triggering the
watchdog error.
This function is available only for
Modbus RTU protocol | 5 | 0 to 255 | Sec | 143 | Read
Write | #### 9.4.6 Monitoring Menu This section describes each item on the monitoring menu. Use this menu to view the states of digital input, values of analog input and information about the power controller such as serial number and software version. **The password to access this menu is 0**. | Parameter Name | Description | Modbus
Address | Par.
Type | |----------------|---|-------------------|--------------| | Dig In 1 | Indicate the state of the signal to digital input 1 | 13 bit8 | Read
Only | | Option | Value | |--------|-------| | Off | 0 | | On | 1 | | Parameter Name | Description | Modbus
Address | Par.
Type | |----------------|---|-------------------|--------------| | Dig In 2 | Indicate the state of the signal to digital input 2 | 13 bit9 | Read
Only | | Option | Value | |--------|-------| | Off | 0 | | On | 1 | | Parameter Name | Description | Modbus
Address | Par.
Type | |----------------|--|-------------------|--------------| | Enable | Indicate whether or
not the power controller is enabled.
The enable signal must be on for the unit to output power
to the load | | Read
Only | | Option | Value | |--------|-------| | Off | 0 | | On | 1 | | Parameter Name | Description | Modbus
Address | Par.
Type | |----------------|---|-------------------|--------------| | SP Source | Indicate whether the power controller is local or remote set point mode | 14 bit1 | Read
Only | | Option | Option Description | | | | | | | | |---------------|---------------------------------------|---|--|--|--|--|--|--| | Local / Comms | Set Point via keypad or communication | 2 | | | | | | | | Remote | Set Point via analog input | 0 | | | | | | | | Parameter Name | Description | Range | Unit | Modbus
Address | Par.
Type | |----------------|--|------------|------|-------------------|--------------| | Analog In1 | Indicates the percent of full scale measured by analog input 1 | 0 to 100.0 | % | 138 | Read
Only | | Analog In2 | Indicates the percent of full scale measured by analog input 2 | 0 to 100.0 | % | 137 | Read
Only | | SW Ver | Indicates the software version number (x.xx.x) | o to 65535 | | 48 | Read
Only | | SW Rel | Indicates the software release date year and week (yyww) | o to 65535 | | 49 | Read
Only | | Unit Type | Indicates the type of power controller | | | 36 | Read
Only | | Option | Description | Value | | | | | | |--------|--|-------|--|--|--|--|--| | RC 1 | Single Phase | 7 | | | | | | | RC 2 | Two Leg, three phase | | | | | | | | RC 3 | Three Leg, three phase | | | | | | | | RC 3P | RC 3P Three Leg, three phase with phase angle capability | | | | | | | | Parameter Name | Description | Range | Unit | Modbus
Address | Par.
Type | |----------------|--|-----------|------|--------------------|--------------| | Max Voltage | Indicates the maximum voltage rating of the power controller | 0 to 1023 | V | 41 | Read
Only | | Max Current | Indicates the maximum current capacity of the power controller | o to 9999 | А | 62 | Read
Only | | Aux Voltage | Indicates the measured line voltage | 0 to 1023 | V | 43 | Read
Only | | Serial No | Indicates the serial number of the power controller | o to 9999 | | 149-150
151-152 | Read
Only | | SCR Temp | Indicates whether the SCR is below or above the factory-set trip point | | | 127 | Read
Only | | Option | Description | Value | |-----------|---|-------| | Disabled | No sensor present / temperature below limit | 0 | | Over Temp | Over temperature | 130 | Configurator software can be used like an alternative of the power controller's keypad and set the advanced features not available via the power controller's onboard user interface. Here we explain how to use it. #### 10.1 Typical Uses The software may be used during commissioning to: - set internal parameter do determine how the power controller operates and performs; - save and restore a setup, copy or clone one power controller to another; - on a day-to-day basis to monitor operation and power usage; - examine performance in more detail to determine if any corrective actions are needed. #### **10.2 Communicating with Power Controllers** When commissioning the power controller, may be useful to connect a computer via the USB port, located below the control panel's display, so it's possible to configure and examine the settings of the controller. The controller's electronics is powered via USB cable, so it's to possible to inspect it before applying power. **NOTE!** the power of the USB port is limited and not designed to power industrial cards, so it manages to feed only the essential parts of the electronics. For complete control, you need to power up the auxiliaries of the power controller. #### 10.3 Recipes A recipe is a file that store the settings of power controller's internal parameter. It is used to save a power controller configuration or to restore an existing configuration in a power controller. #### 10.3.1 Upload a recipe A recipe is created using upload function in the Configurator software and saving it as a file on the computer. #### 10.3.2 Download a recipe An existing recipe can be downloaded to a power controller using download function in Configurator software. #### **10.4 How To** Here the procedures for common tasks are described step-by-step. #### 10.4.1 Install and communication with the power controller #### Procedure to install the Configurator: - 1) Locate the installer: - -On https://www.cdautomation.com/download/cd-automation/software/ ThyristorConfigurator_ver6.exe link is possible Download it - On the Controls Tools DVD ROM disk. - 2) Double-click on the installer program to start installation. - 3) Follow the on-screen instructions. #### Procedure to communicate with a power controller: - 1) if used direct USB connection: - Connect the USB cable between the computer and the micro USB connector on the power controller's keypad - if necessary, wait for the USB driver to install. - 2) **if used RS-485 connection** connect the power controller terminal to computer RS485 port. Usually the standard pc do not have a RS485 port so a USB-to-485 converter is required. - 3) Launch the Configurator software and select - REVEX 1PH: for single phase - REVEX 2/3PH: for 2 or 3 phase power controller - 4) Choose Serial Port From Setting -> Serial Port menu - 5) In value Port, select the COM port connected to the power controller (see the note below) - 6) To verify communications, click Test - 7) Click OK **NOTE!** to determine which port is connected to the power controller, you can: - in the Windows" Device Manager, under Ports (COM & LPT), looking for the COM port named "LPC USB VCOM Port (COMx)" where x is the port number - On configurator software: - open the software without connect the unit and see the available COM port on COM port window setting, - close the COM setting window, - -connect the USB cable to the power controller (wait for the USB driver to install if necessary),- open the COM setting window, see the added COM number and select it. #### **10.5 Using the Configurator** After the software has been installed, communication has been set up and model type selected, is possible to operate with the power controller. ## 10.5.1 To view or save a power controller's settings using "Simple" view section: - Click Simple, if not already on the simple view - 2) Click Upload from unit - 3) Set the address, if necessary - 4) Click READ-> - 5) Wait for the software to read the parameter settings - 6) Click OK - 7) If necessary save the settings in a recipe file: - Click Save - Name the recipe - Click Save button **NOTE!** In the simple view the change are not "live", so to take effect the change in simple section is necessary to download it following download procedure. #### 10.5.2 To edit a setting in a recipe: - 1) Click Simple, if not already on the simple view - 2) Click Open existing recipe - 3) Locate and select the recipe file and click Open - 4) Click OK - 5) Click the menu with the setting you want to change - SETUP - ADVANCED SETUP - HARDWARE - COMMUNICATIONS - 6) Select the value you want to change - 7) Edit the value with the increment and decrement buttons in the field or type the new value and press the Enter key - 8) Repeat steps 5 to 7 for all the changes you want to make - 9) To save the settings in a recipe file: - Click Save - Name the recipe - Click Save button #### 10.5.3 To download a recipe file into a power controller: - 1) Click Simple, if not already on the Simple view - 2) Click Open existing recipe - 3) Locate and select the recipe file and click Open - 4) Click OK - 5) Click Download to unit - 6) Set the address, if necessary - 7) Click SEND-> - 8) Wait for the software to write the parameter settings - 9) Click OK #### 10.5.4 To monitor a power controller with the Test view: - 1) Click Test, if not already on the test view - 2) Click Online # 10.5.5 To log in on the test view to change the digital input and analog input functions: - Click the Access Level value (zero when logged out) - 2) Type the password: 1111 - 3) Click OK #### 10.5.6 To log out the test view: - 1) Click the Access Level value. - 2) Click Log out. - 3) Click OK. #### 10.5.7 To view data on the scope: - 1) Click Test, if not already on the test view - 2) Click Online - 3) Click Load Analyzer - 4) For each of up to three channels (Ch 1 to Ch 3): - With PV1 choose the value to monitor - Select Show - Click the color swatch to change the color - Click the button to turn the channel on. To Down-load click on "Send" on the left side To set address write the number or click on the arroy Address: It is used to set the address of the unit Down Load Actual Recipe Address → 📳 CANCEL #### 10.6 Software General information Here it is described the Configurator Software and how use it. #### 10.6.1 Program Window #### Main Menu Access these menus. #### File menu Exit: close the program #### Setting menu Language: open Language Settings dialog Serial Port: open Serial Port dialog box Option: open General Option dialog box #### ? (Help) menu Message Log: open a serial communication message view **About**: displays the About dialog with the program name and version and contact information #### Instruments selector Select the right instrument to use: **HOME**: the default view **REVEX 1PH**: open the Simple and Test views for a single-phase power controller REVEX 2/3PH: access the Simple and Test views for a three-phase power controller MSG: opens a serial communication message view #### Status Bar Indicates information such as time and date, communications port and baud rate. #### 10.6.2 Simple Section This section is used to create, save,
upload and download recipes of parameters settings. Can be used also to see the settings in a controller. Simple page is the default page when select the model using the Model Button, but if not selected is possible to access it by clicking the Simple tab below the main menu. **NOTE!** This section is not "OnLine" so the parameter values are not updated continuously. They are read only when you upload them from the power controller. To manage a recipe click on: **Create a New recipe**: create a recipe file with the standard default settings Open existing recipe: open an existing recipe file **Upload from unit**: create a new recipe with the value uploaded from a connected power controller Close: close the current recipe Save: save the recipe in a file Save as: save a copy of the recipe in a file **Download to unit**: send the current recipe parameters in the connected power controller **Print**: print the recipe (see sample at right) **Print report**: print the recipe (see sample at right) To edit the actual recipe values click a parameter menu name: **SETUP** ADVANCED SETUP HARDWARE COMMUNICATIONS and after click on the value and modify it. **NOTE!** Changes to the values here affect the open recipe only. To apply these changes to the power controller settings, download them to the power controller using the Download to unit option. #### 10.6.3 Test Section This section is used to monitor and adjust the operation of the power controller in real time using RS485 or USB communication port. After select the model, is possible access to this section clicking the "TEST" tab below the main menu. Operating on TEST Section: Online button: is the button to start or stop communication updates with the power controller. After communication starts, a green communication status indicator spins clockwise when the software communicates correctly with a power controller, if the connection link is broken the color will become red **Address**: value used to set the power controller address Access Level: click the value to log in or out. Default Password address is "1111". #### To configure and monitor the digital inputs: #### Digital input states and functions: show whether each input detects an open or closed circuit and the function the input performs. #### Digital Input States and Function Selectors: set the function for each digital input. Click DI1 or DI2 to expand the options. #### Status and Setup Indicators: **Digital input status**: light on when the input is a closed circuit **Enable indicator**: light on when the power controller is enabled **Enable/Disable button:** click on to enable the power controller if a digital input is not configured for this function **ON indicator**: light on when there is demand for the output to be on **SC indicator**: light on when there is a shorted SCR alarm active **HB indicator**: light on when there is a heater break alarm active **TH** indicator: light on when the heat sink over temperature alarm is active I Lim indicator: light on when the load current exceeds the current limit setting **Unit Size**: Indicate the maximum rated current of the power controller Max Volt: indicate the maximum rated voltage for the power controller V Aux: indicate the voltage the auxiliary input is set to use for powering the electronics Input Type1: indicate the signal analog input 1's type Input Type2: indicate the signal analog input 2's type DI1: indicate digital input 1's function DI2: indicate digital input 2's function Firing: indicate the firing type the power controller is set to use Feedback: indicate the feedback type the power controller is set to use Data Log: indicate the Data Log status. #### Buttons setup options: **Firing**: view and set the firing type and the associated parameters Feedback: view and set feedback type **Communication**: view and set communication options for ports, protocols and fieldbus #### Configure and monitor the analog inputs: Analog Input 1: click Ai 1 to view the signal type **Input Local/Remote selection button**: click to toggle between using the signal received at analog input 1 (remote) or the slider (local) to set the set point. **Reference**: drag the slider, click the increment (+) or decrement (-) buttons or click one of the three percentages (0%, 50% or 100%) to set the set point when the set point source is set to local. Analog Input 2: click Ai 2 to view the signal type and function #### To configure and monitor the power controller: **Power Request**: show the set point signal from analog input 1. The value is a percent of full scale or can be set with the reference slider **Soft Start Time**: show the time over which set point changes are ramped **Output Scaling**: show the scaling applied to the set point signal before it is used by the control loop Voltage indicator: show the RMS load voltage Power indicator: show the RMS load power Current indicator: show the RMS load current Current Limit Set: indicates the current limit set point Bakeout button: click to view and set the heater bakeout feature options **Load Calibration**: set and view the nominal line voltage and nominal load current settings for the application. NOTE! The Load Calibration settings, Load Voltage and Load Current define 100% power for the load. #### 10.6.4. Load Analyzer #### Load Analyzer is used for monitoring values graphically represented Click on **Load Analyzer** button on the test page to open Load Analyzer window. It's possible to see 3 channels (Ch 1, Ch 2 and Ch 3). For each channel configure a pen on the graph: **On/Off button**: click to start trending data reading PV: choose the parameter to trend **Show:** set this option to display or hide the trend **Show Mark**: set this option to display data markers along the trend in the graph area **Live!**: click to view the current waveform on a graph. **Data Log**: click to open the Data Log window. The **History** options to control the movement of the chart: **Scroll left-click**: move the chart left to view more recent data **Stop/Play-click**: toggle the live view or Hystorical view of graphic signal **Scroll right-click**: move the chart right to view older data # Experimental production of the control contr #### The **Actions** to: Clear: to clear the data from the graph Save: to save a JPEG image of the Load Analyzer window with the current trends **Export**: to open a window that includes the trend graph and table with the currently displayed data that can be saved as a JPEG or exported to a CSV file. Use the X - Scale settings to adjust the horizontal (time) axis: Min: set the minutes of data displayed Sec: set the seconds of data displayed Filter: set this option to filter the data Use the Y - Scale settings to adjust the vertical (percent of full scale) axis Max: set the maximum value for the vertical axis Reset: click to reset the vertical axis scaling **NOTE!** Use the increment (up arrow) and decrement (down arrow) buttons to adjust the x and y scales. Numeric entry does not allow the full range of values to be set. #### 10.6.5 MSG view Message view shows the communication activity between the computer and the power controller. #### **PORT** COM: use this view to see when the COM port is accessed and its settings **MODBUS**: Modbus communication protocol area READ Area: use this view to see parameters being polled READ Area -> En Log: enable a short read communication log activity READ Area -> En Detail: if En Log enabled enable a detailed read communication log activity READ Area -> Only Error: if En Log enabled enable a read communication log activity only if in error WRITE Area: use this view to see which parameters and values are sent to the power control READ Area -> En Log: enable a write communication log activity Log Msg: use this view to see the "Data Log" protocol detail when Data Log window is active Status: view the status and settings of the COM port #### **SYSTEM** Memory: view the memory usage of the Configurator software on the computer #### 10.6.6 Settings window Use this window to choose user-settable options for the Configurator software. #### Language: Available Languages: choose the language used in the NOTE! to activate the language change, you need to close and open again the Configurator software Serial Port: Set the serial port parameter Test: click to test for communication with a power controller via the selected port Port: select the computer's COM port to use to communicate with power controllers Baud rate: select Auto to allow the Configurator to set the baud rate for the COM port or deselect the option to manually set the baud rate. **Options**: Set the configurator options List Options: set whether or not parameter values are displayed in hexadecimal in simple view recipes Directory: set the directories in which recipes and images are saved Disable Check Type: set to allow communication with power controllers that are not precise matches for the supported types. Used only for special version. Note that set is not memorized after software shutdown #### View: Hide Tool Bar: future use Hide Status Bar: select to hide the status bar that appears at the bottom of the program window Show Instruments: Hide or show the available instrument in the left side of main windows OK COM8 19200 Stop bit = 1bit - Baud Connection test Test RS232 Add: 1 Port √ Auto Language Serial Port Show Instruments Option # Firing type Choose a correct firing type allows to optimize the thyristor unit for the installed load. The firing type has already configured in line with customer requirements that are defined in the Order Code. The Order Code is written on the identification label. However, if you wish to change the firing type you can use the software configurator or the Control Panel. Caution: this procedure must be performed only by qualified persons. #### 11.1 Zero Crossing ZC firing mode is used with Logic Output from temperature controllers and the Thyristor operates like a contactor. The
Cycle time is performed by temperature controller. ZC minimizes interferences because the Thyristor unit switches ON-OFF at zero voltage. #### 11.2 Burst Firing The Burst Firing is similar to the Single Cycle, but consecutive cycles ON are selectable between 1 and 255, with input signal equal at 50%. When is specified 1 the firing type is Single Cycle. Burst Firing is a method zero crossing that it reduces the electromagnetic interferences because the thyristor switches at zero voltage crossing. The example show the Burst Firing with Burst cycles=4. ## Control Mode (feed-back) The Control Mode (feed-back) type has already configured in line with customer requirements that are defined in the Order Code. The Order Code is written on the identification label. However, if you wish to change the Control Mode (feed-back) type you can use the software configurator or the Control Panel. Caution: this procedure must be performed only by qualified persons. The Control Mode (feed-back) type is defined by the parameter Control Mode (feed-back) in setup menu. If the configurable digital input has set like feed-back Selection, it's possible to change the select feed-back with the Voltage feed-back (V) simply activating the input. It's possible to have: **V2 =** Square Voltage feed-back. The input signal is proportional to the output square voltage. This means that input signal becomes a power demand. The power remains constant if the load impedance doesn't change. The input signal is proportional to the output voltage. This means that input signal becomes a voltage demand. This control mode compensates the voltage fluctuation of the incoming line supply. The input signal is proportional to the current output. This means that input signal becomes a current demand. This control mode maintain the current also if the load impedance changes. P(VxI) = Power feed-back. The input signal is proportional to the power output. This means that input signal becomes a power demand. The power remains constant also if voltage and load impedance change. This control mode is used with silicon carbide elements that change its resistive value with temperature and with age. In addition it compensates the voltage fluctuation of the incoming line supply. The input signal is proportional to the output square current. This kind of feed-back is suggested for cold resistance applications. **None =** No feed-back Open Loop. The input is proportional to the firing angle (α). **External =** External feed-back (0÷10V, 4÷20mA, 0÷20mA). The input signal is proportional to an external signal. This means that input signal becomes a demand to maintain this signal always constant. This control mode is used for example with galvanic systems, where it's necessary to control the current value through the electrodes. #### 13.1 Supply the Electronic Board The REVEX thyristor unit, to work, requires a voltage supply for the electronic boards of 24Vdc 1A on terminal M3 (1-; 2+). **Warning**: Before connecting or disconnecting the unit check that power and control cables are isolated from voltage sources. ### **RS485 Serial port** | M3 Terminal | Description | |-------------|-------------| | 3 | RS485 A+ | | 4 | RS485 B- | The serial communication port RS485 is available on the Command Terminals. On this port may be done a network up to 127 REVEX. **TOP VIEW** #### 14.1 FIELD BUS Module #### **Technical Specification** - Up to n°14 REVEX can be connected for each terminal module - Secondary communication port to connect REVO HMI - · Main process variable available - 24Vdc Power Supply - Simplified configuration | | 1 | 2 | | 3 | | 4 | 5 | 6 | 7 | | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |--------------------------------------|---------|---|---|----|-----|----|------|---|----------|---------|---|---|----|----|----|----|----|----|------| | ORDER CODE | Т | U | - | R | | S | 4 | 8 | 5 | - | - | - | - | - | - | - | - | - | - | | Field Bus or Communication | | | | 8 | 9 | 10 | | | N° zone | s | | | | | | | 15 | 16 | | | description | | | | | cod | е | note | | descrip | tion | | | | | | | со | de | note | | N° 1 Modbus TCP + N° 1 Modbus RTU | J slave | | | Т | С | Р | | | Not con | figured | | | | | | | 0 | 0 | 2 | | N° 1 ProfiNet IO + N° 1 Modbus RTU s | lave | | | Р | Ν | Т | | | 1 zone | | | | | | | | 0 | 1 | | | N° 1 ProfiBus DP + N° 1 Modbus RTU | slave | | | Р | D | Р | | | 2 zones | | | | | | | | 0 | 2 | | | N° 1 Ethernet IP + N° 1 Modbus RTU s | slave | | | Е | 1 | Р | | | 3 zones | | | | | | | | 0 | 3 | | | | | | | | | | | | 4 zones | | | | | | | | 0 | 4 | | | Secondary Communication Port | | | | | 11 | | | | 5 zones | | | | | | | | 0 | 5 | | | description | | | | | cod | е | note | | 6 zones | | | | | | | | 0 | 6 | | | None | | | | | 0 | | | | 7 zones | | | | | | | | 0 | 7 | | | Modbus TCP | | | | | 1 | | 1 | | 8 zones | | | | | | | | 0 | 8 | | | | | | | | | | | | 9 zones | | | | | | | | 0 | 9 | | | Configuration | | | | 12 | 13 | 14 | | | 10 zone | S | | | | | | | 1 | 0 | | | description | | | | | cod | е | note | | 11 zones | 5 | | | | | | | 1 | 1 | | | REVEX 1-2-3PH | | | | R | V | X | | | 12 zone | S | | | | | | | 1 | 2 | | | | | | | | | | | | 13 zone | S | | | | | | | 1 | 3 | | | | | | | | | | | | 14 zone | S | | | | | | | 1 | 4 | | Note (1): Not available with Modbus TCP Field Bus Communication (T-C-P on digit 8-9-10) Note (2): It's possible to manage from 1 to 14 zones with basic read and write configuration (see the Manual). Code "00" is used for different configurations. Addendum Manual available here: https://www.cdautomation.com/download/cd-automation/revex-comm/manuals/ENG/REVEX_14RX_profinet.pdf # 15 Internal Fuse The thyristor unit have internal fuse extrarapid at low I²T for the thyristor protection of against the short-circuits. The Fuses must have I²T 20% less than thyristor's I²T. The warranty of thyristor is null if no proper fuses are used. | Туре | Fuse Code Spare Part | Current
(A _{RMS}) | Vac | FUSE I ² T value
Suggested A2s
(at 500V)* | FUSE I ² T value
Suggested A2s
(at 690V) | Qty for
each
phase | |------|---|--------------------------------|-----|--|---|--------------------------| | 060 | FU5007306.110 or
FU6.9URB17/100 (UL) | 110/100 | 690 | 2170 | 4400/3100 | 1 | | 090 | FU5007306.110 or
FU6.9URB17/100 (UL) | 110/100 | 690 | 2170 | 4400/3100 | 1 | *I²T are multiplied for K value in function of Vac, at 500V K is equal to 0,7 (ex:3100 X 0,7 = 2170). At 690Vac K is equal to 1. #### **Fuses replacement:** Open the cover and remove the screws, then replace it with the correct fuse, use the screws with a proper suggested torque indicated below. Use correct screws M6 x 12 mm. #### N° 2 M6x12mm for each fuse | Туре | Screw | Torque Lb-in
(N-m) | |---------|-------|-----------------------| | 60A-90A | M6 | 44.2 (5.0) | Caution: High speed fuses are used only for the thyristor protection and can not be used to protect the installation. Caution: The warranty of thyristor is null if no proper fuses are used. See tab. Warning: When powered, the thyristor unit is subject to dangerous voltages; disconnect from the power supply before opening the fuse box and touching electrical equipments. #### CD Automation S.r.l.