USER'S MANUAL
Rev. 2/2016

Reva TC 2PH

## TEMPERATURE CロNTRロLLER



## CD Automation S.r.I.

Via Picasso 34/36-20025 - Legnano (MI) - ITALY
Tel +39 0331577479 - Fax +39 0331579479
E-Mail: info@cdautomation.com - WEB: www.cdautomation.com

## 15 SELF-TUNING Algorithms

The instrument implements two different algorithms of self-tuning

- PreTune
- SelfTune


### 15.1 PreTune



Allows to calculates a first approximation of the parameters of PID controller by induction of instability in the controlled process: the control output is increased to the maximum value until it reaches a certain error (SP-PV, typically between $5 \%$ and $10 \%$ of span) before being brought to its minimum value (or vice versa).
Pre-tune is activated by parameter Pret $=$ On of menu SP accessible by pressing FUNC key.
The Pre-Tune function is automatically enabled at the end of calculation or change of setpoint value, it's not inserted if the difference between set and measured temperature is below $20 \%$ of span value.

To deactivate manually the Pre-tune set the parameter Pret $=$ On on menu SP accessible by pressing FUNCkey. When PRETUNE is active LED6 is flashing.
 LED5
 LEDG


### 15.2 SelfTune



If enabled, the algorithm is continuously applied during regulation to optimize the coefficients of the PID controller when using it.
The function of self-tune is always enabled to optimize the coefficients of the PID controller when using it.
The self-tune function is enabled by setting the parameter SLFt = On on SP menu accessible by pressing F UNC key.


The Self-tune function is alway enabled but works only when is between a range of $+/-4 \%$ of the span value.
To disabile self-tuning functiond set the paramente SLFt = SP menu accessible by pressing F UNC key.

When SELFTUNE is enabled but not working LED5 is On. When SELFTUNE is enabled and is working LED5 is On and flashing.

NOTE: If self-tuning is working the PID parameter can ben viewed only without possibilità of settings; It also removed the upper limit output OLH.

## 16 Serial RS485 and USB communication interface

The instrument can be connected to a PC via the RS485 serial interface designed for remote configuration and supervision, or through the Connector USB with RS232 interface for operations of configuration.
In the first case, the serial communications parameters can be setted through the setup configuration of the instrument.
In the second case the parameters are fixed:

- Addres 1
- Baud rate 9600
- Parity none
- Stop bit 1

In both cases, the protocol used is Modbus RTU.
During the operations of remote configuration, the instrument disables the control outputs.

## 17 Configuration Mode

### 17.1 Description

From operative mode it's possible to access the configuration mode by pressing FUNC+MAN for 3 seconds and entering the appropriate password (the upper display shows "PSU"), that value must be set to " 3 " through $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$, confirmed by pressing the FUNC.

The upper display shows the ID of the current group, while the lower display shows the string "CnF" permanently: the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys allows to select the group to change, the FUNC key allows to enter the active group.

For each parameter in the group selected, the upper display will show the ID parameter while the lower display will show the current value: to switch to other parameters group acts on the $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$.
By pressing the FUNC key it's possible to enter into modification of the displayed parameter (the upper display starts flashing).
Use the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys for changing the current value displayed on the lower display.
Press the FUNC key to store the value currently displayed, press the MAN to exit without saving the changes of value.
To end the configuration mode, press MAN until appears on the upper display END and select YES: by selecting NO the instrument returns to the first group available ..

### 17.2 Configuration procedure diagram

Figure 2 and Figure 3 shows the complete sequence of the configuration.


Figure 1: Sequence Diagram Programming - part A


Figure 2: Sequence Diagram Programming - part B

### 17.3 Group INPUT ( ${ }^{\text {P }}$ )

## Int Y Typology of input and range

|  | Display | Typology | Low | High | M.Unit | Regulations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Ld $C$ | TC type L | 0 | 400 | ${ }^{\circ} \mathrm{C}$ | DIN 43710-1977 |
| 1 | $L \quad L$ | TC type L | 0 | 900 | ${ }^{\circ} \mathrm{C}$ |  |
| 2 | $L \quad F$ | TC type L | 0 | 1650 | ${ }^{\circ} \mathrm{F}$ | DIN 43710-1977 |
| 3 | id $[$ | TC type J | -100.0 | 400.0 | ${ }^{\circ} \mathrm{C}$ | IEC 584-1 |
| 4 | U' | TC type J | -100 | 1000 | ${ }^{\circ} \mathrm{C}$ |  |
| 5 | ¢ $F$ | TC type J | -150 | 1830 | ${ }^{\circ} \mathrm{F}$ | IEC 584-1 |
| 6 | $\boldsymbol{H} \boldsymbol{\sim}$ | TC type K | -100.0 | 400.0 | ${ }^{\circ} \mathrm{C}$ | IEC 584-1 |
| 7 | $\boldsymbol{H}$ | TC type K | -100 | 1370 | ${ }^{\circ} \mathrm{C}$ |  |
| 8 | $\boldsymbol{H} \quad F$ | TC type K | -150 | 2500 | ${ }^{\circ} \mathrm{F}$ | IEC 584-1 |
| 9 | $\pi C$ | TC type N | -100 | 1400 | ${ }^{\circ} \mathrm{C}$ |  |
| 10 | $\pi F$ | TC type N | -150 | 2550 | ${ }^{\circ} \mathrm{F}$ | IEC 584-1 |
| 11 | 5 C | TC type S | 0 | 1760 | ${ }^{\circ} \mathrm{C}$ |  |
| 12 | $5 \quad F$ | TC type S | 0 | 3200 | ${ }^{\circ} \mathrm{F}$ | IEC 584-1 |
| 13 | $r \quad L$ | TC type R | 0 | 1760 | ${ }^{\circ} \mathrm{C}$ |  |
| 14 | $r \quad F$ | TC type R | 0 | 3200 | ${ }^{\circ} \mathrm{F}$ | IEC 584-1 |
| 15 | td $[$ | TC type T | -199.9 | 400.0 | ${ }^{\circ} \mathrm{C}$ |  |
| 16 | $t \quad F$ | TC type T | -330 | 750 | ${ }^{\circ} \mathrm{F}$ | IEC 584-1 |
| 17 | Ptd | RTD type Pt100 | -199.9 | 400.0 | ${ }^{\circ} \mathrm{C}$ | DIN 43760 |
| 18 | PtdF | RTD type Pt100 | -199.9 | 400.0 | ${ }^{\circ} \mathrm{F}$ | DIN 43760 |
| 19 | PE ᄃ | RTD type Pt100 | -200 | 800 | ${ }^{\circ} \mathrm{C}$ |  |
| 20 | $P \in \quad F$ | RTD type Pt100 | -330 | 1470 | ${ }^{\circ} \mathrm{F}$ | DIN 43760 |
| 21 | $\cdots \cap A$ | Linear | 0 | 20 | mA |  |
| 22 |  | Linear | 4 | 20 | mA |  |
| 23 | $6 \cap$ A | Linear | 0 | 60 | mV |  |
| 24 | $G ת A$ | Linear | 12 | 60 | mV |  |
| 25 | 104 | Linear | 0 | 10 | V |  |
| 26 | 104 | Linear | 2 | 10 | V |  |

ndE $C \quad$ DECIMAL POINT POSITION (only linear Input)

No Decimal Point "---.."
One Decimal Point
Two Decimal Points
"--..."

Three Decimal Points
"--.--"
"-.--."
LoSc TOP RANGE VALUE FOR LINEAR INPUT
-1999 $\leftrightarrow 4000$ for linear input
For input TC / RTD compare parameter table IntY.
When this parameter is changed, the parameter rL is realigned.
H. Sc BOTTOM RANGE VALUE FOR LINEAR INPUT
-1999 $\leftrightarrow 4000$ for linear input
For input TC / RTD compare parameter table IntY.
When this parameter is changed, the parameter rH is realigned.
OFFS OFFSET (disabled for linear input)
$-199 \leftrightarrow 199$ for input with range without decimals
$-19.9 \leftrightarrow 19.9$ for input with range with decimals
The value is algebraically added to the measured value.

### 17.4 Group I/O ( 10 )

### 17.4.1 Out 1

| $01 F \%$ | Visible with Relay, SSR circuit |
| :---: | :---: |
|  | Function OUT1 |
|  | nome |
|  | Disabled |
|  | HEAt |
|  | Heating Function |
|  | COOL |
|  | Cooling Function |
|  | AL1 |
|  | Out alarm 1 Function |
|  | AL2 |
|  | Out alarm 2 Function |
|  | AL3 |
|  | Out alarm 3 Function |
| OIFA | Visible with ANALOGIC circuit |
|  | Function OUT1 |
|  | nome |
|  | Disabled |
|  | HEAt |
|  | Heating Function |
|  | COOL |
|  | Cooling Function |
|  | Sprt |
|  | SetPoint retransmission Function |
|  | PVrt |
|  | Measure retransmission Function |

0 ity Visible with ANALOGIC circuit
TYPE OUTPUT OUT1
020
out 0-20 mA
420
out 4-20 mA
010
out 0-10 V
210
out 2-10 V

O1LS Visible with ANALOGIC circuit + O1Fn = retransmission
BOTTOM LIMIT OF RETRANSMISSION
Limits of span
01HS Visible with ANALOGIC circuit + O1Fn = retransmission
TOP LIMIT OF RETRANSMISSION
Limits of span

### 17.4.2 OUT 2

O己Fn Function OUT2
none
Disabled
HEAt
Heating Function
COOL
Cooling Function
AL1
Out alarm 1 Function
AL2
Out alarm 2 Function
AL3
Out alarm 3 Function

### 17.4.3 OUT 3 or Di 1

| $\exists \exists F_{n}$ | Visible with Relay, SSR circuit |
| :--- | :--- |
|  | Function OUT3 |
|  | חonE |
|  | Disabled |
|  | HEAt |
|  | Heating Function |
|  | COOL |
|  | Cooling Function |
|  | AL1 |
|  | Out alarm 1 Function |
|  | AL2 |
|  | Out alarm 2 Function |
|  | AL3 |
|  | Out alarm 3 Function |


| , 1tY | Visible with DI circuit, DI/O + O4Fn = none |
| :---: | :---: |
|  | Function Digital Input 2 |
|  | nome |
|  | Disabled |
|  | Auto |
|  | Select mode AUTO / MANUAL |
|  | tune |
|  | Start selftune |
|  | $5 P$ |
|  | Select setpoint |
|  | ALrS |
|  | Alarm Reset |
|  | PSEL |
|  | Palette Selection |

## CAUTION:

For the proper functioning of the digital set parameters correctly in the menu EHL
$0 \exists F_{n} \quad$ Visible with ANALOGIC circuit.
Function OUT3
none
Disabled
HEAt
Heating Function
COOL
Cooling Function
Sprt
SetPoint retransmission Function
PVrt
Measure retransmission Function
$0 \exists$ ヒリ Visible with ANALOGIC circuit
TYPE OUTPUT OUT3

020
Out 0-20 mA
420
Out 4-20 mA
010
Out 0-10 V
210
Out 2-10 V

O3LS Visible with ANALOGIC circuit + O3Fn = retransmission BOTTOM LIMIT OF RETRANSMISSION
Limits of span
O3HS Visible with ANALOGIC circuit + O3Fn =
TOP LIMIT OF RETRANSMISSION
Limits of span

## 17．4．4 Out 4

```
O4Fn Visible with RELE', DI, DI/O circuit
    Function OUT4
    nomE
    Disabled
    HEAt
    Heating Function
    COOL
    Cooling Function
    AL1
    Out alarm 1 Function
    AL2
    Out alarm 2 Function
    AL3
    Out alarm 3 Function
    , ユセリVisibile Con Scheda DI, DI/O + O4Fn = none
            Function DIGITAL INPUT 2
    nonE
    Disabled
    Auto
    Select AUTO / MANUAL mode
    tunE
    Start selftune
    5P
    Setpoint select
    AirS
    Alarm Reset
    PSEL
    Palette Select
```


## CAUTION：

For the proper functioning of the digital Input set parameters correctly in the menu $E \mathrm{HL}$
17.4.5 General

| CLnd | Visibile with at least one output setted as Cooling (Double action) |
| :--- | :--- |
|  | TYPE OF COOLING AGENT |
|  | Air |
|  | Air cooling |
|  | 0 Oil cooling |
|  | $H 20$ |
|  | Water cooling |
|  |  |
|  | COOLING ACTION |
|  | (with no out, cooling out and at least one relè or ssr out) |
|  | $r E_{u}$ |
|  | Reverse action |
|  | $d i r$ |
|  | Direct action |

### 17.5 ALARM Group ( $A L$ )

### 17.5.1 Alarm 1

| AL if | ALARM1 FUNCTION (available only if O2Fn = AL1o) |
| ---: | :--- |
|  | חonE |
|  | Disabled |
|  | $\operatorname{Proc}$ |
|  | Process Alarm |
|  | $b A n d$ |
|  | Band Alarm |
|  | $d E_{u}$ |
|  | Deviation Alarm |

ALin ALARM1 CONFIGURATION (available only if O2Fn=AL1o and AL1F <> none) h $A$
High alarm with automatic reset
1A
Low alarm with automatic reset
h п
High alarm with manual reset
Ln
Low alarm with manual reset
AL $10 \quad$ ALARM1 ACTION(available only if O2Fn $=$ AL1o and AL1F $<>$ none)
dir
Direct action (Out high in alarm condition)
$r E_{u}$
Reverse action (Out high in normal condition)

## A $1 \sim 5$ ALARM1 STANDBY FUNCTION

(available only if O2Fn = AL1o and AL1F <> none)

OFF
Disabled
$0 \square$
Abled

```
AL己F ALARM2 FUNCTION (available only if O3Fn = AL2o)
nomE
Disabled
Proc
Process Alarm
bAnd
Band Alarm
dEu
Deviation Alarm
```


h $A$
High alarm with automatic reset
1A
Low alarm with automatic reset
$h 1$
High alarm with manual reset
L 1
Low alarm with manual reset
ALこ O ALARM2 ACTION (available only if O3Fn = AL2o and AL2F <> none)
dir
Direct action (Out high in alarm condition)
$r E_{u}$
Reverse action (Out high in normal condition)
A 2 п 5 ALARM2 STANDBY FUNCTION
(available only if O3Fn = AL2o and AL2F <> none)
of F
Disabled
$0 \square$
Abled

### 17.5.3 Alarm 3

$A L \exists F \quad$ ALARM3 FUNCTION (available only if O4Fn = AL3o)
none
Disabled
Proc
Process Alarm
$b A n d$
Band Alarm
dEu
Deviation Alarm

ALヨn ALARM3 CONFIGURATION (available only if O4Fn = AL3o and AL3F <> none)
h $A$
High alarm with automatic reset
I A
Low alarm with automatic reset
h 1
High alarm with manual reset
L 1
Low alarm with manual reset

ALヨo ALARM3 ACTION (available only if O4Fn = AL3o and AL2F <> none)
dir
Direct action (Out high in alarm condition )
$r E_{u}$
Reverse action (Out high in normal condition)

A $\exists \cap 5$ ALARM3 STANDBY FUNCTION (available only if O4Fn = AL3o e AL2F <> none) of $F$
Disabled
$0 \square$
Abled
17.6 Heating Break-Down Group ( Hbdu )
hcen MEASUREMENT OF CURRENT of LEAKAGE AND BREAK-DOWN
ofF
Disabled
$0 \square$
Abled
heEn SPAN LOAD CURRENT (available with HCEn = On)
Value between 10 A e $100^{\circ}$

### 17.7 Loop break Group ( LbAL )

16A LOOP BREAK ALARM CONFIGURATION
d. 5

Disabled
Enb
Abled

| 16du | LOOP BREAK DEVIATION ALARM (available with LBa = Enb) |
| :---: | :---: |
|  | Value between 0 e 500 |
| 16t | LOOP BREAK ALARM TIMER (available with LBa = Enb) |
|  | Value between 00.01 and 40.00 mm .ss |
| 16ヶ5 | LOOP BREAK ALARM HYSTERESIS (available with LBa = Enb) |
|  | Value between 1e 50 |

### 17.8 SELFTUNE Group ( tunE )

| $t \cap F \cap$ | ENABLING SELFTUNE <br> d. 5 <br> Disabled <br> Enb <br> Abled |
| :---: | :---: |
| $r$ cen | RELATIVE COOLING GAIN CALCULATION (available only if O2Fn = Cool) <br> of $F$ <br> Not calculated from selftune <br> $0 \quad 0$ <br> calculated from selftune |
| $h P_{6}$ | UPPER LIMIT OF PROPORTIONAI BAND Valore compreso tra LPb1 o LPb2 e 100.0\% |
| \|Pb 1 | LOWER LIMIT OF PROPORTIONAL BAND with heating/cooling (available if $\mathrm{O} 2 \mathrm{Fn}=\mathrm{Cool}$ ) <br> Value between $1.5 \%$ and HPb |
| $1 P$ ¢ | LOWER LIMIT OF PROPORTIONAL BAND with OUT1 heating (available if $\mathrm{O} 2 \mathrm{Fn} \neq \mathrm{Cool}$ ) <br> Value between $1.0 \%$ and HPb |
| 1t. | LOWER LIMIT INTEGRAL TIME <br> Value between 00.01 and 02.00 mm .ss |

17.9 SOFT START Group ( $50 F_{t}$ )

SFFn SOFT START FUNCTION
Enb Abled
dis Disabled
th55 INPUT THRESHOLD FOR ENABLING SOFT START
Value between thr limits of span
to 1 SOFT START TIMEOUT
Value between 1 e 540 minuti.

### 17.10 Gruppo PARAMETRI VARI ( n , SL )

|  | MANUAL FUNCTION |
| :---: | :---: |
|  | TonE |
|  | None |
|  | Au7 |
|  | Automatic / manual (out 0 (-100\%) / 100\%) |
|  | OFF |
|  | OUT1 $=0$ |
|  | 15Hu |
|  | Show the load current |
| 5 ¢7d | STARTUP STATE |
|  | Auto |
|  | In automatic mode |
|  | Shdu' |
|  | Same settings of switch off |
|  | If in manual mode, the setting of power out it's the same when it was off. |
|  | 5 hdO |
|  | f in manual mode, the setting of power out it's 0 . |

## SEcF

CONDITION FOR OUTPUT SET TO VALUE OF SAFETY
0
Standard - NO out set to value of safety.
1
Value of safety in over-range and under-range
己
Value of safety only in over-range
$\exists$
Value of safety only in under-range

SEco VALUE OF SAFETY (available only if SECf $\neq 0$ )
O2Fn = Cool
Value between -100\% and 100\%
O2Fn $=$ Cool
Value between 0\% and 100\%
cot $F$ CONTROL ACTION
$P$,
Process controlled by algorithm PI
P,d
Process controlled by algorithm PID

## Onof

Process controlled by algorithm ON/OFF
$5 P_{u} 5$ SETPOINT VIEW

## FnSP

View of the final set point in normal operative conditions
-P 5 P
View of the operative set point in normal operative conditions

| $F, 1 t$ | FILTER ON MEASURE |
| :---: | :---: |
|  | Mone NO filter |
|  | 1 sec |
|  | 2 |
|  | $\exists$ |
|  | 4 |
|  | 5 |
|  | 6 |
|  | 7 |
|  | $\theta$ |
|  | 9 |
|  | 10 |
| $5 P d r$ | DIRECT ENABLING MODE SP |
|  | OFF MODE disabled |
|  | - $\boldsymbol{n}$ MODE abled |

17.11 RS485 Group ( $\stackrel{-4}{ }$ )

| SErE | ENABLING RS485 COMMUNICATION |
| :---: | :---: |
|  | OFF |
|  | Disabled |
|  | $0 \%$ |
|  | Abled with Modbus protocol |
| Add | DEVICE ADDRESS (disabled if SErE = Off) |
|  | Value between 1e 255 |

bAud BAUD RATE (disabled if SErE = Off)
Value between 600 e 115200 baud
PAr BYTE FORMAT (disabled if SErE = Off)
EUE
8 bit with even parity
odd
8 bit with odd parity
nonE
8 bit without parity

## SELECTION OF TABLE MODBUS ADDRESSES

0-4
17.12 Default Configuratiov Group ( $d E F$ )
Eur Loading European parameters

OFF
No action
$0 n$
Loading

AクEr Loading American parameters
OFF
No action
0 n
Loading

### 17.13 Notes

(1) The range of span must be greater (in absolute units) of:

- 100 units for linear inputs
- $300^{\circ} \mathrm{C}\left(550^{\circ} \mathrm{F}\right)$ for TC inputs
- $100^{\circ} \mathrm{C}\left(200^{\circ} \mathrm{F}\right)$ for RTD inputs
(2) If O2Fn = Cool the parameter O1AC is forced on " $\mathrm{E} E V$ "
(3) The default value of cycle time CY2 and rC (relative cooling gain) are adjusted according to the type of cooling agent selected:

|  | CY2 | rC |
| :---: | :---: | :---: |
| Air | 10 seconds | 1.00 |
| Oil | 4 seconds | 0.80 |
| Water | 2 seconds | 0.40 |

The parameters CY2 and rC are automaticaly updated during the storing of the new value of PAL.
(4) The dedicated out of signals Alarm2 / OUT1 break-down, OUT1 leakage current alarm and loop break alarm are in logic - OR.
(5) For Band Alarm, H.A. and H.m. means outside band alarm. L.A. and L.m. means inside band alarm.
(6) If the alarm is programmed as band alarm or deviation, the standby function masks the alarm condition in startup and after a variation off set point until the value of process variable reaches the alarm threshold with hysteresis .
If it's a process alarm masks alarm conditions only during startup.
(7) The alarm of break-down and leakage current are reported on OUT3
(8) In the setting of the manual reset and action see AL2m and AL2o
(9) At startup the device initializes the timer limit (tOL) of output by setting its output power OLH, if the value of process variable is below the threshold.

## 18 Serial communications

## 18.1 introduction to Modbus Protocol

This protocol half duplex takes a master and one or more slaves.
A single multidrop connection can support up to 128 devices.
The computer must be programmed to serve as a master that controls which slave can have access to the line. All other slaves are waiting. Each slave has a unique address from 1 to 255.

NOTE:
The numerical values in this text are expressed as:
Binary value if followed by $b$
Decimal value if not followed by any letter
Hexadecimal value if they are followed by $h$

The Modbus codes supported are:
Function Code 1 And 2: Reading Bits
Function Code 3 and 4: Reading Words
Function Code 5: Single Bit Writing
Function Code 6: Single Word Writing
Function Code 15: Writing Multiple Bits
Function Code 16: Multiple Words Writing.

The codes $1-2$ can request up to 24 bits.
The code 15 can write up to 24 bits.
The codes 3-4 can request up to 64 words
The code 16 can write up to 64 words.

In case of error the instruments gives the following error code:

2 illegal address
3 Value out of bounds
$9 \quad$ illegal Number of bits or words requested
$10 \quad$ Bits or words not modifiable.

All the words and bits can be read in every situation.
Can only be changed if the instrument is in the condition described in column WRITE:

RT During normal operation
Conf During the configurations.
Calibr During calibration operations
Always Always

To move from one state to another must write in the word 503 a specific code to put an instrument in the desired condition:

| $0 \times 5 A$ | Configuration | The instument show SEr Cnf |
| :--- | :--- | :--- |
| 0xAA | Calibration | The instument show SEr CAL |
| $0 \times 55$ | Test | The instument show SEr tESt |
| $0 \times A 5$ | Run Time | The instrument returns to normal operation. |

The following procedure are illegal $\mathrm{RT}>$ Conf, Conf $>\mathrm{RT}$
RT > Calibr, Calibr > RT
RT > Test , Test > RT
To check the status of the single parameter you can control the bit at offset 5000

Bit $0 \quad 0=$ Invalid $\quad 1=$ Valid
Bit 7 0=Not Editable 1= Editable

Es: SP $\quad$ Add $=100 \quad$ Par Staus $=5100$

### 18.2 TABLE 0

Address table for data exchange

### 18.3 WORDS ADDRESS

|  | Descriz. | Addr. | Read | Modif. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SP | SP | 100 | Always | RT |  |
| Stun | Pretune/Adaptive | 101 | Always | RT | 0 = Excluded 1 = Included (a) |
| SP1 | SP1 | 102 | Always | RT |  |
| rL | SP range low | 103 | Always | RT |  |
| rH | SP range high | 104 | Always | RT |  |
| SPu | SP rate up | 105 | Always | RT | 1-100 (101 = Infinite) |
| SPd | SP rate down | 106 | Always | RT | 1-100 (101 = Infinite) |
| mRSt | Alarm ACK | 107 | Always | RT | 1 = alarm ACK (a) |
| AL1 | Alarm 1 threshold | 108 | Always | RT | Only if AL1F <> None |
| HSA1 | Alarm 1 hysteresis | 109 | Always | RT | Only if AL1F <> None |
| AL2 | Alarm 2 threshold | 110 | Always | RT | Only if AL2F <> None |
| HSA2 | Alarm 2 hysteresis | 111 | Always | RT | Only if AL2F <> None |
| AL3 | Alarm 3 threshold | 112 | Always | RT | Only if AL3F <> None |
| HSA3 | Alarm 1 hysteresis | 113 | Always | RT | Only if AL3F <> None |
| Pb | Proportional band | 114 | Always | RT | 10 (15 w/C)/1000 |
| HYS | Hysteresis | 115 | Always | RT | 1/100 (only with CntF = 0) |
| Ti | Integral time | 116 | Always | RT | 1/1200 (1201 = excluded)(only with CntF <> 0) |
| Td | Derivative time | 117 | Always | RT | 1/600 ( 1 = excluded)(only for CntF = 2) |
| IP | Integral preload | 118 | Always | RT | $0(-100 \mathrm{w} / \mathrm{C}) / 100$ (only with CntF <> 0) |
| rC | Relative cooling gain | 119 | Always | RT | 20/100 (Note 3) |
| OLAP | OLAP | 120 | Always | RT | -20/50 (Note 3) |
| CY1 | Output 1 cycle 1(10 relè)/2000 | 121 | Always | RT | only with Out $1<>\mathrm{mA}$ |
| OLH | Output High Limit | 122 | Always | RT | $0(-100 \mathrm{w} / \mathrm{C}) / 100$ |
| SOut | Output security limit | 123 | Always | RT | 0 (-100 w/C)/100 |
| CY2 | Output 2 cycle | 124 | Always | RT | 1 (10 relay)/2000 (Note 3) |
| rnp | Output max rate | 125 | Always | RT | 1/25 (26 = step) |
| Hbd | Breakdown threshold | 126 | Always | RT | Only with HCEn = 1 (enabled) |
| HbdH | Breakdown hysteresis | 127 | Always | RT | Only with HCEn = 1 (enabled) |
| SCA | Leakage alarm threshold | 128 | Always | RT | Only with HCEn $=1$ (enabled) |


|  | Descriz. | Addr. | Read | Modif. | Note |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| mnOP | Tune operation mode | 129 | Always | RT | Only if I1tY or l2tY = 2 |


|  | Descriz. | Addr. | Read | Modif. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O1Fn | Output 1 function | 305 | Always | Conf | $\begin{aligned} & 0=\text { none } \\ & 1=\text { heating } \\ & 2=\text { cooling } \\ & 3=\text { alarm } 1 \\ & 4=\text { alarm } 2 \\ & 5=\text { alarm } 3 \end{aligned}$ |
| O1Fn | Out 1 function (uscita mA) 1 = heating | 306 | Always | Conf | $0=\text { none }$ <br> 2 = cooling <br> $3=$ SP retrasmission <br> $4=$ Pv retrasmission |
| O1ty | Output 1 type | 307 | Always | Conf | $\begin{aligned} & 0=0-20 \mathrm{~mA} \\ & 1=4-20 \mathrm{~mA} \\ & 2=0-10 \mathrm{~V} \\ & 3=2-10 \mathrm{~V} \end{aligned}$ |
| O1LS | Output 1 retrasm. low scale | 308 | Always | Conf |  |
| O1HS | Output 1 retrasm. high scale | 309 | Always | Conf |  |
| O2Fn | Output 2 function | 310 | Always | Conf | $\begin{aligned} & 0=\text { None } \\ & 1=\text { heating } \\ & 2=\text { cooling } \\ & 3=\text { alarm } 1 \\ & 4=\text { alarm } 2 \\ & 5=\text { alarm } 3 \end{aligned}$ |
| O3Fn | Output 3 function | 312 | Always | Conf | $\begin{aligned} & 0=\text { none } \\ & 1=\text { heating } \\ & 2=\text { cooling } \\ & 3=\text { alarm } 1 \\ & 4=\text { alarm } 2 \\ & 5=\text { alarm } 3 \end{aligned}$ |
| O3Fn | Out 3 function (uscita mA) | 313 | Always | Conf | $\begin{aligned} & 0=\text { none } \\ & 1=\text { heating } \\ & 2=\text { cooling } \\ & 3=\text { SP retrasmission } \\ & 4=\text { Pv retrasmission } \end{aligned}$ |


|  | Descriz. | Addr. | Read | Modif. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O3ty | Output 3 type | 314 | Always | Conf | $\begin{aligned} & 0=0-20 \mathrm{~mA} \\ & 1=4-20 \mathrm{~mA} \\ & 2=0-10 \mathrm{~V} \\ & 3=2-10 \mathrm{~V} \end{aligned}$ |
| O3LS | Output 3 retrasm. low scale | 315 | Always | Conf |  |
| O3HS | Output 3 retrasm. high scale | 316 | Always | Conf |  |
| I1tY | Input 1 type | 317 | Always | Conf | Note 7 <br> Only with O3Fn = None <br> $0=$ None <br> 1 = Auto/Manual <br> 2 = Tune/Adaptive ON/OFF <br> 3 = SP/SP1 selection <br> 4 = Alarm reset <br> 5 = Control table selection |
| O4Fn | Output 4 function | 318 | Always | Conf | $\begin{aligned} & 0=\text { None } \\ & 1=\text { heating } \\ & 2=\text { cooling } \\ & 3=\text { alarm } 1 \\ & 4=\text { alarm } 2 \\ & 5=\text { alarm } 3 \end{aligned}$ |
| 12ty | Input 2 function | 319 | Always | Conf | Note 8 <br> Only with O4Fn = None <br> $0=$ None <br> 1 = Auto/Manual <br> 2 = Tune/Adaptive ON/OFF <br> 3 = SP/SP1 selection <br> 4 = Alarm reset <br> $5=$ Control table selection |
| CLmd | Cooling mode | 311 | Always | Conf | Note 3 $\begin{aligned} & 0=\text { Air } \\ & 1=\text { Oil } \end{aligned}$ |
| HACt | Heating mode | 361 | Always | Conf | $\begin{aligned} & 0=\text { Reverse } \\ & 1=\text { Direct } \\ & 2=\mathrm{H} 2 \mathrm{O} \end{aligned}$ |


| Descriz. | Addr. | Read | Modif. | Note |
| :--- | :--- | :--- | :--- | :--- |
| AL1F | Alarm 1 function |  |  |  |


|  | Descriz. | Addr. | Read | Modif. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AL3o | Alarm 3 action | 330 | Always | Conf | $\begin{aligned} & 0=\text { Reverse } \\ & 1=\text { Direct } \end{aligned}$ |
| A3mS | Alarm 3 stand by | 331 | Always | Conf | $\begin{aligned} & 0=O N \\ & 1=O F F \end{aligned}$ |
| HCEn | Breakdown alarm enable | 332 | Always | Conf | 0 = Disabled 1 = Enabled |
| HCHS | TA high scale | 333 | Always | Conf | 5/1000 (Only with HCEn = 1) |
| LbAI | Loop alarm enable | 334 | Always | Conf | $0=$ Disabled $1=$ Enabled |
| LbdU | Loop alarm deviation | 335 | Always | Conf | 0/500 (Only with LbAI = 1) |
| Lbt | Loop alarm time | 336 | Always | Conf | 0/600 (Only with LbAI = 1) |
| LbHS | Loop alarm hysteresis | 337 | Always | Conf | 1/50 (Only with LbAl = 1) |
| TnFn | Tune enable | 338 | Always | Conf | $0=$ Disabled $1=$ Enabled |
| rCEn | RC computed by tune | 339 | Always | Conf | $0=$ Disabled 1 = Enabled (Only with TnFn = 1) |
| HPb | Max PB computed by tune | 340 | Always | Conf | Only with $\mathrm{TnFn}=1$ <br> LPb1/1000 with O2Fn <> Cool <br> LPb2/1000 with O2Fn = Cool |
| LPb1 | Min Pb with only Heat | 341 | Always | Conf | 15/HPb (Only with TnFn $=1$ and O2Fn <> Cool) |
| LPb2 | Min Pb with Heat/Cool. | 342 | Always | Conf | 10/HPb (Only with TnFn = 1 and O2Fn = Cool) |
| LTi | Min Ti computed by tune | 343 | Always | Conf | 1/120 (Only with TnFn = 1) |
| SFFn | Soft start enable | 344 | Always | Conf | $0=$ Disabled $1=$ Enabled |
| tHSS | Soft start threshold | 345 | Always | Conf | Only with SFFn = 1 |
| tOL | Soft start time | 346 | Always | Conf | 1/540 (Only with SFFn = 1) |
| mnFn | Manual function | 347 | Always | Conf | $\begin{aligned} & 0=\text { None } \\ & 1=\text { Auto/Manual } \\ & 2=\text { OFF } \\ & 3=\text { TA display } \end{aligned}$ |
| SECF | Condition for output safety value | 348 | Always | Conf | $\begin{aligned} & 0=\text { None } \\ & 1=\text { In over-range and under-range } \\ & 2=\text { In over-range } \\ & 3=\ln \text { under-range } \end{aligned}$ |
| SECO | Output safety value | 349 | Always | Conf | $0(-100 \mathrm{w} / \mathrm{C}) / 100$ (only with SECF <> 0) |




|  | Descriz. | Addr. | Read | Modif. | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Test input | 700 | Always | Never |  |
|  | Test Output Status | 702 | Always | Never |  |
|  | TA value (counts)(O1 ON) | 703 | Always | Never |  |
|  | TA value (counts)O1 OFF) | 704 | Always | Never |  |
|  | SP/SP1 selection | 705 | Always | RT | 0 = SP 1 = SP1 (Note 9) |
| tCL | Tc low value | 900 | Always | Calibr | Counts |
| tCH | TC high value | 901 | Always | Calibr | Counts |
| tCt | TC test | 902 | Always | Calibr | Counts normalized 0-30000 |
| CJ | $R J$ value | 903 | Always | Calibr | Counts |
| tCJ | $R J$ value | 904 | Always | Calibr | degree*10 |
| rtdL | RTD low value | 905 | Always | Calibr | Counts |
| rtdH | RTD high value | 906 | Always | Calibr | Counts |
| rtdt | TestRTD | 907 | Always | Calibr | Counts normalized 0-30000 |
| mAL | mA low value | 908 | Always | Calibr | Counts |
| mAH | mA high value | 909 | Always | Calibr | Counts |
| mAt | Test mA | 910 | Always | Calibr | Counts normalized 0-30000 |
| VL | $\checkmark$ low value | 911 | Always | Calibr | Counts |
| VH | V high value | 912 | Always | Calibr | Counts |
| Vt | Test V | 913 | Always | Calibr | Counts normalized 0-30000 |
| tAL | TA low value | 914 | Always | Calibr | Counts |
| tAH | TA high value | 915 | Always | Calibr | Counts |
| tAt | Test TA | 916 | Always | Calibr | Counts normalized 0-1000 |
| deF | DefaultCalibr. | 917 | Always | Calibr | 1 = load |
| Sert | Serial Test | 920 | Always | Test |  |
| mbSt | Modbus table | 921 | Always | Conf | 0-3 |
| Stmd | Start mode | 922 | Always | Conf | $0=\text { Auto }$ <br> 1 = As at shut down (if manual with the same power) <br> $2=$ As at shut down (if manual with tpower $=0$ ) |
| FiLt | Filter time | 926 | Always | Conf | 0-10 |
| Spdr | SP direct edit enable | 927 | Always | Conf | $\begin{aligned} & 0=\text { desable } \\ & 1=\text { enable } \end{aligned}$ |

### 18.4 BITS

| Bit | Desc | Read | Modif |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 101 | Status Out 1 | Always | Never | 1 = ON |  |
| 102 | Status Out 2 | Always | Never | 1 = ON | (a)(b)(c) |
| 103 | Status Out 3 | Always | Never | 1 = ON | (d) |
| 104 | Status Out 4 | Always | Never | 1 = ON | (e) |
| 105 | Status Allarme 1 | Always | Never | 1 = alarm |  |
| 106 | Status Allarme 2 | Always | Never | 1 = alarm |  |
| 107 | Status Allarme 3 | Always | Never | 1 = alarm |  |
| 108 | Status Heater Breack (HB) | Always | Never | 1 = alarm |  |
| 109 | Status Loop Alarm | Always | Never | 1 = alarm |  |
| 110 | Status Pretune | Always | Never | 0 = excluded 1 = included |  |
| 111 | Status Adaptive | Always | Never | 0 = excluded 1 = included |  |
| 112 | Status Auto/Manual | Always | RT | $0=$ auto 1 = manual (Note 9) |  |
| 113 | Status Input 1 | Always | Never | $0=$ open 1 = closed | (f) |
| 114 | Status Input 2 | Always | Never | $0=$ open 1 $=$ closed | (g) |
| 115 | Selezione SP/SP1 | Always | Never | 0 = SP 1 = SP1 | (h) |
| 116 | Status sensor break | Always | Never | 1 = alarm |  |
| 117 | Status Overrange | Always | Never | 1 = alarm |  |
| 118 | Status Underrange | Always | Never | 1 = alarm |  |
| 119 | Misura corrente Valida (HB) | Always | Never | 1 = Valida 0 = to update |  |
| 120 | Misura corrente Valida(SC) | Always | Never | 1 = Valid 0 = to update |  |
| 121 | Status Alm Leakage | Always | Never | 1 = alarm |  |
| 122 | ON//OFF | Always | RT |  |  |
| 500 | Reserved |  |  |  |  |
| 502 | Reserved |  |  |  |  |
| 503 | Parameter Chanded | Always | Never | 1 = if it change (is resetted when reading) |  |
| 504 | Reserved |  |  |  |  |
| 505 | Reserved |  |  |  |  |
| 506 | Reserved |  |  |  |  |
| 507 | Reserved |  |  |  |  |
| 508 | Reserved |  |  |  |  |

NOTE:
a. Valid only if present in the out module on Out 2
b. Valid only if present in the out module on Out 2 e O2Fn $=1$ (cooling out)
c. Valid only if present in the out module on Out $2<>\mathrm{mA} / \mathrm{V}$ e O2Fn $=1$ (cooling out)
d. Valid only if present in the out module on Out 3
e. Valid only if present in the out module on Out 4
f. Valid only if present in the out module or contact on Out 3
g. Valid only if present in the out module or contact on Out 4
h. Valid only if the switch from selection is not abled

### 18.5 TABLE 1 (WEST 6600)

The Table 1 Redirect only some of the parameters maintain compatibility the compatibility with the West 6600
For parameters that do not appear in the list refer to the table 0

## WORDS ADDRESSES

| Indirizzi | Nome | Read | Modif | Note |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Measure | Always | Never |  |
| 2 | SP | Always | RT |  |
| 3 | Power | Always | RT se in manuale |  |
| 4 | Reserved |  |  |  |
| 5 | PB2 | Always | RT |  |
| 6 | PB1 | Always | RT |  |
| 7 | STATUS | Always | Never |  |
| 8 | Integral | Always | RT |  |
| 9 | Deriv | Always | RT |  |
| 10 | TC1 | Always | RT |  |
| 11 | Scale range low | Always | Never |  |
| 12 | Scale range high | Always | Never |  |
| 13 | Alm1 Val | Always | RT |  |
| 14 | Alm2 Val | Always | RT |  |
| 15 | Manual reset | Always | RT |  |
| 16 | Overlap | Always | RT |  |
| 17 | Reserved |  |  |  |
| 18 | Decim pos | Always | Never |  |
| 19 | TC2 | Always | RT |  |
| 20 | PW Lim | Always | RT |  |
| 21 | Act SP | Always | Never |  |
| 22 | SP Hing Lim | Always | RT |  |
| 23 | SP Low Lim | Always | RT |  |
| 24 | Reserved |  |  |  |
| 25 | Input filt | Always | RT |  |
| 26 | Input offs | Always | RT |  |
| 27 | Reserved |  |  |  |
| 28 | Reserved |  |  |  |
| 29 | HB current H lim | Always | RT |  |
| 30 | Reserved |  |  |  |
| 31 | HB Low | Always | RT |  |
| 32 | HB High | Always | RT |  |
| 33 | Live current | Always | RT |  |
| 34 | AM user key | Always | RT |  |
| 35 | Alarm 1 hysteresis | Always | RT |  |

CD Automation srl

| Indirizzi | Nome | Read | Modif | Note |
| :--- | :--- | :--- | :--- | :--- |
| 36 | Alarm 2 hysteresis | Always | RT |  |
| 37 | Reserved |  |  |  |
| 38 | Reserved |  |  |  |
| 39 | Reserved |  |  |  |

### 18.6 Status Table (Word 7)

| Bit | Desc |  |  |
| :--- | :--- | :--- | :--- |
| 0 | Comm write en | RO | $1=$ Enable |
| 1 | Auto Man | RW | $1=$ Manual , $0=$ Auto |
| 2 | Self-Tune | RW | $1=$ Active, $0=$ Not Active |
| 3 | Pre-Tune | RW | $1=$ Active, $0=$ Not Active |
| 4 | Alarm 1 Status | RO | $1=$ Active, $0=$ Not Active |
| 5 | Alarm 2 Status | RO Active, $0=$ Not Active |  |
| 6 | Alarm 3 tatus | $1=$ Active, $0=$ Not Active |  |
| 7 | Par changed | RO | $1=$ parameter changed <br> NOTE :reset after each reading of bit 7 or Word 7 |
| 8 | On/off contr (standby) | RW OFF, $0=$ ON |  |
| 9 | Reserved | RO | $1=$ Active, $0=$ Not Active |
| 10 | HB low | RO | $1=$ Active, $0=$ Not Active |
| 11 | HB short Circuit |  |  |
| 12 | Reserved | Reserved |  |
| 13 | Reserved |  |  |
| 14 | Reserved |  |  |
| 15 |  |  |  |


| Bit | Desc | Read | Modif |  |
| :--- | :--- | :--- | :--- | :--- |
| 1 | Comm write en | Always | Never | $1=$ Enable |
| 2 | Auto Man | Always | RT | $1=$ Manual, $0=$ Auto |
| 3 | Self-Tune | Always | RT | $1=$ Active, $0=$ Not Active |
| 4 | Pre-Tune | Always | RT | $1=$ Active, $0=$ Not Active |
| 5 | Alarm 1 Status | Always | Never | $1=$ Active, $0=$ Not Active |
| 6 | Alarm 2 Status | Always | Never | $1=$ Active, $0=$ Not Active |
| 7 | Alarm 3 tatus | Always | Never | $1=$ Active, $0=$ Not Active |
| 8 | Par changed | Always | Never | $1=$ parameter changed <br> NOTA: reset after each reading of bit 7 or Word 7 |
| 9 | On/off contr (standby) | Always | RT | $1=$ OFF, $0=$ ON |
| 10 | Reserved | Always | Never |  |
| 11 | HB low | Always | Never | $1=$ Active, $0=$ Not Active |
| 12 | HB short Circuit | Always | Never | $1=$ Active, $0=$ Not Active |
| 13 | Reserved | Always | Never |  |
| 14 | Reserved | Always | Never |  |
| 15 | Reserved | Always | Never |  |
| 16 | Reserved |  |  |  |

## 19 Default Parameter Loading

### 19.1 User procedure

In each operative mode (operative, programming and calibration) is possible at any time to invoke the set of default values to be assigned to their parameters.

### 19.2 Loading Default operative parameter

The performed procedure consists of the following steps:

- Press func key to enter in the edit menu.
- With Keys $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ select the group "deF" and press FUNC.
- On the upper display appears writing "rt"; On lower display "on".
- Press FUNC key to load the default
- Press MAN key to cancel.

| Setpoint | Lower range limit |
| :---: | :---: |
| Selftune | Disabled |
| Manual Reset of alarm condition | Off |
| Auxiliary Setpoint | Upper range limit |
| Software protection Key | Unlocked |
| Threshold Alarm 1 | Lower range limit (process alarm) |
|  | 0 (Band alarm or di deviation) |
| Hysteresis alarm 1 | 0.1\% |
| Threshold Alarm 2 | Lower range limit (process alarm) |
|  | 0 (Band alarm or di deviation) |
| Hysteresis alarm 2 | 0.1\% |
| Threshold Alarm 3 | Lower range limit (process alarm) |
|  | 0 (Band alarm or di deviation) |
| Hysteresis alarm 3 | 0.1\% |
| Proportional band | 4.0\% |
| Hysteresis | 0.5\% |
| Integral time | 04.00 (4 minutes) |
| Derivative time | 01.00 (1 minut) |
| Integral preload | 30 (Only one contol Out) |
|  | 0 (Two control Out) |


| Cycle time out1 | 15 seconds (relay) |
| :---: | :---: |
|  | 4 seconds (SSR) |
| Cycle time out2 | 10 seconds (Cooling by air) |
|  | 4 seconds (Cooling by oil) |
|  | 2 seconds (Cooling by Water) |
| Relative cooling gain | 1.00 (Cooling by air) |
|  | 0.80 (Cooling by oil) |
|  | 0.40 (Cooling by Water) |
| Dead-band / overlap | between |
| Out heating / cooling | 0 |
| Lower setpoint limit | Lower range Input limit |
| Upper setpoint limit | Upper range Input limit |
| Rate-of-change for positive changes of sp | Infinite |
| Rate-of-change for negative changes of sp | Infinite |
| Superiore Out Limiter | 100\% |
| Timeout soft-start | Infinito |
| Break-down alarm threshold out1 | 50.0\% fo span value |
| Leakage alarm threshold out1 | 100.0\% fo span value |
| Limit of output of control changes | Infinite |

### 19.3 Default configuration parameter Loading

The performed procedure consists of the following steps:

- enter in configuration as described above.
- With Keys $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ select the group "deF" and press FUNC.
- With Keys $\boldsymbol{\Delta}$ e $\boldsymbol{\nabla}$ select the desired table type (european or american)
- Press FUNC key
- With Keys $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ select "on"
- Press FUNC key to load the default
- Press MAN key to cancel.


## 19．3．1 European table

| Par | Desc | Val |
| :---: | :---: | :---: |
| Menu ${ }^{\text {P／}}$ |  |  |
| Mr | Input type and range | EL－$\quad\left(-100 \leftrightarrow 1000{ }^{\circ} \mathrm{C}\right)$ |
| ПdEt | Decimal point position | ＂－－－－．＂（no decimals） |
| 1056 | Initial scale value for linear inputs | 0 |
| H，56 | Full scale value for linear inputs | 400 |
| －1F5 | Offset | 0 |
| Menu |  |  |
| $0 \%^{1}$ | OUT1 logic function | hERIE Heating |
| 0118 | OUT1 analogic function | hEAL Heating |
| 0163 | Output type 1 if analogic | $4-304-20 \mathrm{~mA}$ |
| 0115 | Lower limit for the retransmission | $=1050$ |
| 01145 | Upper limit for the retransmission | ＝$H^{\prime \prime}$ ，56 |
| OF\％ | OUT2 logic function | Gil 1 out allarm1 |
| ロIF | OUT3 logic function | HiL2 out allarm2 |
| ， 163 | Digital Input 1 Function | Buto Auto／Manual |
| －3FA | Analogic OUT3 Function | PLirt Retransmission PV |
| 93ヒ3 | Output type 1 if analogic | $4-204820 \mathrm{~mA}$ |
| 0375 | Lower limit for the retransmission | $=1050$ |
| －345 | Upper limit for the retransmission | ＝ 415 |
|  | OUT4 function | AL3 out alarm3 |
| こごコ | Digital Input 2 Function | $59 \quad 2{ }^{\circ} \mathrm{SP}$ |
| Eind | Type of cooling agent | A ir Air |
| HRIL | OUT1 Action | rEG reverse |



| 1Pbi | Lower Limit of proportional band with heating／cooling | 1．5\％ |
| :---: | :---: | :---: |
| 19口を | Lower Limit of proportional band with OUT1 heating | 1．0\％ |
| 任， | Lower Limit of integral time | $00.50 \mathrm{~mm} . \mathrm{ss}$ |
| Menu SoFt |  |  |
| 5FFn | SOFT START FUNCTION | d 5 Disabled |
| Lh5 | Threshold input for enabling soft start | 0 |
| toi | Soft start timeout | 0 |
| Menu $\cap$ ¢ 5 |  |  |
| $n \square F n$ | MANUAL function | BIFF On／Off Function |
| Stnd | Alarm State at Startup | 5 hdu （ Reload last state |
| SEEF | Condition for output set to the security value | 0 no otput setted at safety value |
| 5EG口 | Security value | 0 |
| EntF | Control of Action | $\boldsymbol{P}$ ，d Cotrol tipe PID |
| 5P：5 | Setpoint view | $F \cap 5 P \quad$ Final Setpoint |
| $F, 1 t$ | Filter on measure | 1 |
| 5Pdr | Direct modify enabling SP | $0 \cap$ Abled |
| Menu r 485 |  |  |
| SErE | Communication RS485 Abled | $0 \cap$ Abled with modbus protocol |
| Add | Device address | 1 |
| $b A$ ud | Baud rate | 19.2 19200Baud |
| PAr | Parità checksum | nonE 8 bit with no parity |
| 765t | MODBUS table selection | 0 |

## 19．3．2 Americana table

| Par | Desc | Val |
| :---: | :---: | :---: |
| Menu mio |  |  |
| MiP | Input type and range | EL UF（－150↔ $\left.1830{ }^{\circ} \mathrm{F}\right)$ |
| OdE | Decimal point position | ＂－－－－．＂（no decimal） |
| 1056 | Initial scale value for linear inputs | 0 |
| H，56 | Full scale value for linear inputs | 1830 |
| OFFS | Offset | 0 |
| Menu |  |  |
| $0{ }^{1}$ | OUT1 logic function | HERE Heating |
| －1FA | OUT1 analogic function | HERE Heating |
| 0 －123 | Output type 1 if analogic | $4-204-20 \mathrm{~mA}$ |
| 0115 | Lower limit for the retransmission | ＝ 2056 |
| 01145 | Upper limit for the retransmission | ＝ $\mathrm{H}^{6}$ |
| －2Fn | OUT2 logic function | BiL ：out allarm1 |
| － 7 | OUT3 logic function | Bic＇out allarm2 |
| ，1t | Digital Input 1 Function | Buto Auto／Manual |
| －3FA | Analogic OUT3 Function | PUirt Retransmission PV |
| ロード3 | Output type 1 if analogic | 4－304－20mA |
| 0.315 | Lower limit for the retransmission | $=6.05$ |
| 0345 | Upper limit for the retransmission | ＝ $\mathrm{H}^{4} \mathrm{SK}$ |
| －4F\％ | OUT4 function | Ait 3 out alarm3 |
| ご可 | Digital Input 2 Function | $59 \quad 20 \mathrm{SP}$ |
| Eind | Type of cooling agent | $A$ ir Air |
| HRILE | OUT1 Action | rEid riverse |
|  |  |  |


| Menu AL |  |  |
| :---: | :---: | :---: |
| BL IF | ALARM1 Function | $d E \cup$ Deviation＋automatic reset |
| Bi in | ALARM1 Configuration | L $A$ Low＋automatic reset |
| Bita | ALARM1 Action | d ir Direct |
| 8105 | ALARM1 standby Function | Off |
| ロもご | ALARM2 Function | $d E \cup$ Deviation＋automatic reset |
| ロもご | ALARM2 Configuration | L $A \quad$ Low＋automatic reset |
| BLこ口 | ALARM2 Action | d ir Direct |
| $A こ \square 5$ | ALARM2 standby Function | Off |
| BiコF | ALARM3 Function | $d E \cup$ Deviation＋automaticreset |
| B！ヨ | ALARM3 Configuration | L $A$ Low＋automatic reset |
| 1230 | ALARM3 Action | d ir Direct |
| 8305 | ALARM3 standby Function | Off |
| Menu Hbdu |  |  |
| HEEn | break－down and leakage current measure | Off |
| H6H5 | Full scale value for load current | 30 |
| Menu L GAL |  |  |
| GBit | loop break alarm configuration | d 5 Disabled |
| 16du | loop break alarm deviation | 50 |
| tbt | loop break time alarm | $10.00 \mathrm{~mm} . \mathrm{ss}$ |
| 16月5 | loop break hysteresis alarm | 10 |
| Menu tunE |  |  |
| tnFn | Selftune enablng | $t \cap F \cap$ Abled |
| －EEn | calculation of relative cooling gain | OFF Disabled |
|  | Superior Limit of proportional band | 30．0\％ |


| 1Pbi | Lower Limit of proportional band with heating／cooling | 1．5\％ |
| :---: | :---: | :---: |
| 19ヵこ | Lower Limit of proportional band with OUT1 heating | 1．0\％ |
| 值， | Lower Limit of integral time | $00.50 \mathrm{~mm} . \mathrm{ss}$ |
| Menu SoFt |  |  |
| 5FFn | SOFT START FUNCTION | d 15 Disabled |
| $\underline{1655}$ | Threshold input for enabling soft start | 0 |
| toi | Soft start timeout | 0 |
| Menu $\cap$ ¢ 5 |  |  |
| のnFの | MANUAL function | BFF On／Off Function |
| 5tnd | Alarm State at Startup | 5 hout Reload last state |
| SEEF | Condition for output set to the security value | 0 no otput setted at safety |
| 5EC口 | Security value | 0 |
| EntF | Control of Action | $\boldsymbol{P}$ ，d Cotrol tipe PID |
| 5965 | Setpoint view | $F \cap S P \quad$ Final Setpoint |
| $F, 1 t$ | Filter on measure | 1 |
| $5 P \mathrm{dr}$ | Direct modify enabling SP | $0 \cap$ Abled |
| Menu $\mathrm{r}^{4} \mathrm{BS}$ |  |  |
| SErE | Communication RS485 Abled | $0 \cap$ Abled with modbus |
| Add | Device address | 1 |
| $b$ bud | Baud rate | 19.2 19200Baud |
| PAr | Parità checksum | nonE 8 bit with no parity |
| 7651 | MODBUS table selection | 0 |

Reva Tص
TEMPERATURE CロNTRロLLER

## 2 Part



## CD Automation S.r.I.

Via Picasso 34/36-20025 - Legnano (MI) - ITALY
Tel +39 0331577479 - Fax +39 0331579479
E-Mail: info@cdautomation.com - WEB:
www.cdautomation.com

## 20 Calibration Procedure

### 20.1 Description

From The operating mode you can access the calibration mode by pressing FUNC+V keys for at least 3 seconds and by entering the appropriate password protection (upper disply shows "PSuC"), The value have to be settede at velue " 5 " by $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys, and confermed by FUNC KEY. The lower display show
II display inferiore visualizza the identifier of the actual group, while the upper display show the string "CAL" permanently: The keys $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ allows to choose the group to calibrate, the FUNC key allows to enter in the active group.
For each calibration point in the group selected, the upper display will show the ID parameter while the lower display shows the currently stored value: to switch to other parameters of the group acts on the
$\Delta$ and $\boldsymbol{\nabla}$ keys.
By pressing the FUNC key allows to enter into calibration mode of the parameter shown (the upper display starts flashing).
The lower display will show the values (in count) read from the conversion circuit.
The value can get to 30000, so the counts are displayed on both displays.
To end the calibration process, press MAN until appears on the upper display END and select YES: By selecting NO the instrument returns to the first group available.

### 20.2 Guidelines for calibration

For an accurate calibration proceed as follows:
a) - To calibrate the instrument must be mounted in its case, to obtain a stable internal temperature.
b) - The ambient temperature must be stable. Should be avoided all the variations due to the temperature conditioner or other.
c) - The relative humidity must not exceed $70 \%$.
d) - The instrument must be switched on for at least 20 minutes.
e) - If possibile work in ambient without electromagnetic interference.
f) - During calibration, connect an input at a time.

For calibration is necessary to use calibrators with the following resolutions:

## ACCURACY

1) For Current Input $+0.025 \%$ output $+0.0025 \%$ range +0.01 mA
2) For voltage inputs: $+0.005 \%$ output $+0.001 \%$ range +5 mV
3) For TC inputs: $+0.005 \%$ output $+0.001 \%$ range +5 mV
4) For RTD inputs: $+0.02 \%+0.0025 \mathrm{~W} /$ decade.
5) For cold junction compensation: better than $0.1^{\circ} \mathrm{C}$

### 20.3 Calibration from keypad

The calibration parameters are divided into groups.
Each group includes two parameters (initial scale and full scale) and one control point.
Follows a list of groups of calibration:
A) Input TC
B) Cold junction
C) Input RTD
D) Linear Input mA
E) Linear input 10 V
F) Current Input TA
G) Default configuration parameter loading

NOTE:
During calibration, the display of measured counts, may also involve the upper display.
In fact, if the value exceeds 9999 to display the first digit to the right of the upper display is used for the most significant digit of the counts.

If instead of viewing the data currently stored, if the 9999 figure exceeds the lower display will show "uuuu".

### 20.3.1 TC and linear input calibration

Link the instrument as shown:


## "tCL" -Initial scale value

The upper display shows "tCL" while the lower display shows the value in counts actually stored:

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 0.000 mV
- Press FUNC key. The upper display shows "C" letter; the lower display shows the measured counts.
- After several seconds, necessary to stabilize the measure eventually, press FUNC. The new data is stored.


## "tCH" - Final scale value

The upper display shows "tCH" while the lower display shows the value in counts actually stored:

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 60.000 mV
- Press FUNC key. The upper display shows "C" letter; the lower display shows the measured counts.
- After several seconds, necessary to stabilize the measure eventually, press FUNC. The new data is stored.


## Calibration Check

The upper display shows " t " while the lower display shows the value in counts actually stored:

- Check that, by setting the calibrator at 0.000 mV , the display shows $0+10$ counts.
- Check that, by setting the calibrator at 60.000 mV , the display shows $30000+-10$ counts
- Check that, by setting the calibrator at 30.000 mV , the display shows $15000+-10$ counts


### 20.3.2 Cold Junction Calibration

The upper display shows "tCJ" " while the lower display shows the value in counts actually stored:

- Place a precision thermometer on the input terminals.
- Wait a few seconds to stabilize all the devices (sensors, instrument calibration, thermometer).
- Read the value on the thermometer
- Press FUNC key.
- With $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys set on lower display the temperature value.
- Press FUNC key.


### 20.3.3 RTD Input Calibration

## "rtdL" - Initial scale value

The upper display shows "rtdL" while the lower display shows the value in counts actually stored:

- Put on short circuit terminals 13,14 and 15 of $M 3$ of calibration instruments.
- PressFUNC key. The upper display will show "C"; The lower display the measured counts.
- After few secconds, maybe necessary to stabilize the measure, press FUNC. The new data will be stored


## "rtdH" - Final scale value

Link the instrument as shown:


The upper display shows "rtdH" while the lower display shows the value in counts actually stored:

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 375.00 Ohm.
- Press FUNC key. The upper display shows "C" letter; the lower display shows the measured counts.
- After several seconds, necessary to stabilize the measure eventually, press FUNC. The new data is stored.


## Calibration Check

The upper display shows " t " while the lower display shows the value in counts actually stored:

- Check that, by setting the calibrator at 50.00 Ohm, the display shows $4100+-10$ counts.
- Check that, by setting the calibrator at 250.00 Ohm, the display shows $20189+-10$ counts
- Check that, by setting the calibrator at 375 Ohm, the display shows $30000+-10$ counts


### 20.3.4 Input Calibration mA

Link the instrument as shown:

"mAL" - Initial scale value

The upper display shows "mAL" while the lower display shows the value in counts actually stored:

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 0.000 mA
- Press FUNC key. The upper display shows "C" letter; the lower display shows the measured counts.
- After several seconds, necessary to stabilize the measure eventually, press FUNC. The new data is stored.


## "mAH" - Final scale value

The upper display shows "mAH" while the lower display shows the value in counts actually stored:

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 20.000 mA
- Press FUNC key. The upper display shows "C" letter; the lower display shows the measured counts.
- After several seconds, necessary to stabilize the measure eventually, press FUNC. The new data is stored.


## Calibration Check

The upper display shows " t " while the lower display shows the value in counts actually stored:

- Check that, by setting the calibrator at 0.000 mA , the display shows $0+10$ counts.
- Check that, by setting the calibrator at 20.000 mA , the display shows $30000+10$ counts
- Check that, by setting the calibrator at 10.000 mA , the display shows 15000 +- 10 counts


### 20.3.5 Input 10 V Calibration

Link the instrument as shown:


## "UL" - Initial scale value

The upper display shows "UL" while the lower display shows the value in counts actually stored:

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 0.000 V
- Press FUNC key. The upper display shows "C" letter; the lower display shows the measured counts.
- After several seconds, necessary to stabilize the measure eventually, press FUNC. The new data is stored.


## "UH" - Final scale value

The upper display shows "UH" while the lower display shows the value in counts actually stored:

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 10.000 V
- Press FUNC key. The upper display shows "C" letter; the lower display shows the measured counts.
- After several seconds, necessary to stabilize the measure eventually, press FUNC. The new data is stored.


## Calibration Check

The upper display shows "t" while the lower display shows the value in counts actually stored:

- Check that, by setting the calibrator at 0.000 V , the display shows $0+-10$ counts.
- Check that, by setting the calibrator at 10.000 V , the display shows $30000+-10$ counts
- Check that, by setting the calibrator at 5.000 V , the display shows $15000+-10$ counts


### 20.3.6 Current transformer Input calibration

Link the instrument as shown:


## "tAL" - Initial scale value

The upper display shows "tAL" while the lower display shows the value in counts actually stored:

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 0.000 mA AC
- Press FUNC key. The upper display shows "C" letter; the lower display shows the measured counts.
- After several seconds, necessary to stabilize the measure eventually, press FUNC. The new data is stored.


## "tAH" - Final scale value

The upper display shows "tAH" while the lower display shows the value in counts actually stored:

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 50.000 mA AC
- Press FUNC key. The upper display shows "C" letter; the lower display shows the measured counts.
- After several seconds, necessary to stabilize the measure eventually, press FUNC. The new data is stored.


## Calibration Check

The upper display shows "t" while the lower display shows the value in counts actually stored:

- Check that, by setting the calibrator at 0.000 mA AC , the display shows $0+-10$ counts.
- Check that, by setting the calibrator at 50.000 mA AC , the display shows $1000+-10$ counts
- Check that, by setting the calibrator at 25.000 mA , the display shows $500+-10$ counts


### 20.4 Calibration from serial

To calibrate the instrument by serial you must first set the instrument under calibration by setting the word 503 on value $0 x A A$.

The upper display shows "SEr".
The lower display shows " $[A L$ "

### 20.4.1 Input TC and LINEAR Input calibration

Link the instrument as shown:


## Initial scale value

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 0.000 mV
- After several seconds, necessary to stabilize the measure eventually, write 1 in word 900 (tCL). The new data is stored.


## Final scale value

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 60.000 mV
- After several seconds, necessary to stabilize the measure eventually, write in word 901 (tCH). The new data is stored.


## Calibration Check

The upper display shows " t " while the lower display shows the value in counts actually stored:

- Check that, by setting the calibrator at 0.000 mV , the word 902 shows $0+-10$ counts
- Check that, by setting the calibrator at 60.000 mV , the word 902 shows $30000+-10$ counts
- Check that, by setting the calibrator at 30.000 mV , the word 902 shows $15000+-10$ counts


### 20.4.2 Cold Junction Calibration

- Place a precision thermometer on the input terminals.
- Wait a few seconds to stabilize all the devices (sensors, instrument calibration, thermometer).
- Read the value on the thermometer
- Write the value (in tenths of degree) in the word 903 (CJ)


### 20.4.3 RTD Input Calibration

## Initial scale value

- Put on short circuit terminals 1, 2 and 3 of J 2 of calibration instruments.
- After few secconds, maybe necessary to stabilize the measure, write 1 in 905 (rtdL). The new data will be stored


## Final scale value

Link the instrument as shown:


- Link the instrument in calibration mode to calibrator.
- Set calibrator on 375.00 Ohm.
- After several seconds, necessary to stabilize the measure eventually, write 1 in 906 (rtdH) word. The new data is stored.


## Calibration Check

- Check that, by setting the calibrator at 50.00 Ohm, the word 907 shows $4100+-10$ counts
- Check that, by setting the calibrator at 250.00 Ohm, the word 907 shows $20189+-10$ counts
- Check that, by setting the calibrator at 375 Ohm, the word 907 shows 30000 +- 10 counts


### 20.4.4 Input Calibration mA

Link the instrument as shown:


## Initial scale value

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 0.000 mA
- After several seconds, necessary to stabilize the measure eventually, write 1 in 908 (mAL) word. The new data is stored.


## Final scale value

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 20.000 mA
- After several seconds, necessary to stabilize the measure eventually, write 1 in 909 (mAH) word. The new data is stored.


## Calibration Check

- Check that, by setting the calibrator at 0.000 mA , the word 910 shows $0+10$ counts.
- Check that, by setting the calibrator at 20.000 mA , the word 910 shows $30000+-10$ counts
- Check that, by setting the calibrator at 10.000 mA , the word 910 shows $15000+-10$ counts


### 20.4.5 Input 10 V Calibration

Link the instrument as shown:


## Initial scale value

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 0.000 V
- After several seconds, necessary to stabilize the measure eventually, write 1 in 911 (VLH). word.. The new data is stored.


## Final scale value

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 10.000 V
- After several seconds, necessary to stabilize the measure eventually, write 1 in 912 (VLH). The new data is stored.


## Calibration Check

- Check that, by setting the calibrator at 0.000 V , the word 913 shows $0+-10$ counts
- Check that, by setting the calibrator at 10.000 V , the word 913 shows $30000+10$ counts
- Check that, by setting the calibrator at 5.000 V , the word 913 shows $15000+-10$ counts


### 20.4.6 Calibrazione Input Trasformatore Amperometrico

Link the instrument to calibrator as shown:


Initial scale value

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 0.000 mA AC
- After several seconds, necessary to stabilize the measure eventually, write 1 in 914 (tAL). word. The new data is stored.

Final scale value

- Link the instrument in calibration mode to calibrator.
- Set calibrator on 50.000 mA AC
- After several seconds, necessary to stabilize the measure eventually, write 1 in 915 (tAH). word. The new data is stored.


## Calibration Check

- Check that, by setting the calibrator at 0.000 mA AC , the word 916 shows $0+-10$ counts.
- Check that, by setting the calibrator at 50.000 mA AC , the word 916 shows 1000 +- 10 counts
- Check that, by setting the calibrator at 25.000 mA , the word 916 shows +-10 counts


### 20.5 Caricamento valori di calibrazione di default

By writing 1 in 917 (deF) word the default value are loaded.

## 21 Tables:

### 21.1 Table 1

| 0 | TC type L $0400.0^{\circ} \mathrm{C}$ DIN 43710-1977 |
| :---: | :---: |
| 1 | TC type L $0900{ }^{\circ} \mathrm{C}$ |
| 2 | TC type L $01650{ }^{\circ} \mathrm{F}$ DIN 43710-1977 |
| 3 | TC type J-100.0 400.0 ${ }^{\circ} \mathrm{C}$ IEC 584-1 |
| 4 | TC type J-100 $1000{ }^{\circ} \mathrm{C}$ |
| 5 | TC type J-150 $1830{ }^{\circ} \mathrm{F}$ IEC 584-1 |
| 6 | TC type K-100.0 $400.0{ }^{\circ} \mathrm{C}$ IEC 584-1 |
| 7 | TC type K-100 $1370{ }^{\circ} \mathrm{C}$ |
| 8 | TC type K-150 $2500{ }^{\circ} \mathrm{F}$ IEC 584-1 |
| 9 | TC type N -100 $1400{ }^{\circ} \mathrm{C}$ |
| 10 | TC type N-150 $2550{ }^{\circ} \mathrm{F}$ IEC 584-1 |
| 11 | TC type S $01760{ }^{\circ} \mathrm{C}$ |
| 12 | TC type S $03200{ }^{\circ} \mathrm{F}$ IEC 584-1 |
| 13 | TC type R $01760{ }^{\circ} \mathrm{C}$ |
| 14 | TC type R $03200{ }^{\circ} \mathrm{F}$ IEC 584-1 |
| 15 | TC type T-199.9 $400.0{ }^{\circ} \mathrm{C}$ |
| 16 | TC type T -330 $750{ }^{\circ} \mathrm{F}$ IEC 584-1 |
| 17 | RTD tipo Pt100-199.9 400.0 ${ }^{\circ} \mathrm{C}$ DIN 43760 |
| 18 | RTD tipo Pt100-199.9 400.0 ${ }^{\circ} \mathrm{F}$ DIN 43760 |
| 19 | RTD tipo Pt100-200 $800{ }^{\circ} \mathrm{C}$ |
| 20 | RTD tipo Pt100-330 $1470{ }^{\circ} \mathrm{F}$ DIN 43760 |
| 21 | Lineare 020 mA |
| 22 | Lineare 420 mA |
| 23 | Lineare 060 mV |
| 24 | Lineare 1260 mV |
| 25 | Lineare 010 V |
| 26 | Lineare 210 V |

### 21.2 Table 2

| 0 | Relay type |
| :--- | :--- |
| 1 | SSR type |
| 2 | mA type |
| 3 | Digital type |
| 4 | Contact type |
| 7 | None |

## 22 Test Hardware via seriale

By writing on word 920 a number from 1 to 28 it's possibile to make a series of tests on hardware instrument. The tests are:

| 0 | Fine test |
| :---: | :---: |
| 1 | Display Test |
| 2 | Led Test |
| 3 | FUNC key Test |
| 4 | MAN key Test |
| 5 | UP key Test |
| 6 | DOWN key Test |
| 7 | Eeprom Test |
| 8 | RS485 Test |
| 9 | USB Test |
| 10 | Rele 1 Test |
| 11 | Rele 2 Test |
| 12 | Rele 3 Test |
| 13 | Rele 4 Test |
| 14 | Out 4 mA Test |
| 15 | Out 20 mA Test |
| 16 | Input 1 Test |
| 17 | Input 2 Test |
| 18 | 10 mV measure Test |
| 19 | 60 mV measure Test |
| 20 | 4 mA measure Test |
| 21 | 20 mA measure Test |
| 22 | 0 ohm measure Test |
| 23 | 300 Ohm measure Test |
| 24 | 1 V measure Test |
| 25 | 10 V measure Test |
| 26 | RJ Test |
| 27 | TA 5 mA Test |
| 28 | TA 50 mA Test |

### 22.1 Display Test

Appear in sequence all the cipher and numbers.
The check must be done visually. There is no feedback on the serial.

### 22.2 Led Test

All the LEDs Are switched on in sequence.
Also decimal points are considered of the two numbers to the right LEDs.
The check must be done visually. There is no feedback on the serial.

### 22.3 FUNC key Test

It's necessary to press and release the FUNC key. The tool writes 1 on 702 word on when the key is pressed and 0 when it is released.

### 22.4 MAN Key Test

It's necessary to press and release the MAN key. The tool writes 1 on 702 word on when the key is pressed and 0 when it is released.

### 22.5 UP key Test

It's necessary to press and release the UP key. The tool writes 1 on 702 word on when the key is pressed and 0 when it is released.

### 22.6 DOWN key Test

It's necessary to press and release the DOWN key. The tool writes 1 on 702 word on when the key is pressed and 0 when it is released.

### 22.7 EEPROM Test

The instrument performs a control read / write to all locations of EEPROM.
At the end write 1 on 702 word if the test result positive, 0 if negative.

### 22.8 Relè 1 Test

This test is possible only if there is a relay module or SSR, or digital on output 1.
Relay 1 is energized and de-energized cyclically
The word 702 is written to 1 when the relay is energized, 0 when it is de-energized.
There is no control if the relay is energized actually.

### 22.9 Relè 2 Test

This test is possible only if there is a relay module or SSR, or digital on output 2.
Relay 2 is energized and de-energized cyclically
The word 702 is written to 1 when the relay is energized, 0 when it is de-energized.
There is no control if the relay is energized actually.

### 22.10 Relè 3 Test

This test is possible only if there is a relay module or SSR, or digital on output 3.
Relay 3 is energized and de-energized cyclically
The word 702 is written to 1 when the relay is energized, 0 when it is de-energized.
There is no control if the relay is energized actually.

### 22.11 Relè 4 Test

This test is possible only if there is a relay module or SSR, or digital on output 4.
Relay 4 is energized and de-energized cyclically
The word 702 is written to 1 when the relay is energized, 0 when it is de-energized.
There is no control if the relay is energized actually.

### 22.12 Out 4 mA Test

This test is possible only if there is a mA module on output 1.
The output is set with the value corresponding to 4 mA .
The control must be performed externally. There is no feedback on the serial.

### 22.13 Out 20 mA Test

This test is possible only if there is a mA module on output 1.
The output is set with the value corresponding to 20 mA .
The control must be performed externally. There is no feedback on the serial.

### 22.14 Input 1 Test

This test is possible only if there is a contact or digital I/O module on out 3. It's necessary to close and open contact 1 . The instrument write 1 on word 702 when the contact is close and 0 when it's open.

### 22.15 Input 2 Test

This test is possible only if there is a contact or digital I/O module on out 4. It's necessary to close and open contact 2 . The instrument write 1 on word 702 when the contact is close and 0 when it's open.

## $22.16 \mathbf{1 0} \mathbf{~ m V}$ measure Test

- Connect the terminals input to calibrator, as described in the calibration chapter.
- Generate 10 mV .
- After few seconds, necessary to stabilize the measure, write 18 in word 920.
- On word 702 is written 3 until the measurement is completed. At the end will be written 0 if the measure will be in the limits, otherwise 1.


### 22.1760 mV measure Test

- Connect the terminals input to calibrator, as described in the calibration chapter.
- Generate 60 mV .
- After few seconds, necessary to stabilize the measure, write 19 in word 920.
- On word 702 is written 3 until the measurement is completed. At the end will be written 0 if the measure will be in the limits, otherwise 1.


### 22.184 mA measure Test

- Connect the terminals input to calibrator, as described in the calibration chapter.
- Generate 4 mA .
- After few seconds, necessary to stabilize the measure, write 20 in word 920.
- On word 702 is written 3 until the measurement is completed. At the end will be written 0 if the measure will be in the limits, otherwise 1.


## $22.19 \mathbf{2 0}$ mA measure Test

- Connect the terminals input to calibrator, as described in the calibration chapter.
- Generate 20 mA .
- After few seconds, necessary to stabilize the measure, write 21 in word 920.
- On word 702 is written 3 until the measurement is completed. At the end will be written 0 if the measure will be in the limits, otherwise 1.


### 22.20 ohm measure Test

- Connect the terminals input to calibrator, as described in the calibration chapter.
- Generate 0 Ohm.
- After few seconds, necessary to stabilize the measure, write 22 in word 920.
- On word 702 is written 3 until the measurement is completed. At the end will be written 0 if the measure will be in the limits, otherwise 1.


### 22.21300 ohm measure Test

- Connect the terminals input to calibrator, as described in the calibration chapter.
- Generate 300 ohm.
- After few seconds, necessary to stabilize the measure, write 23 in word 920.
- On word 702 is written 3 until the measurement is completed. At the end will be written 0 if the measure will be in the limits, otherwise 1.


### 22.221 V measure Test

- Connect the terminals input to calibrator, as described in the calibration chapter.
- Generate 1V.
- After few seconds, necessary to stabilize the measure, write 24 in word 920.
- On word 702 is written 3 until the measurement is completed. At the end will be written 0 if the measure will be in the limits, otherwise 1.


### 22.23 10 V measure Test

- Connect the terminals input to calibrator, as described in the calibration chapter.
- Generate 10V.
- After few seconds, necessary to stabilize the measure, write 25 in word 920.
- On word 702 is written 3 until the measurement is completed. At the end will be written 0 if the measure will be in the limits, otherwise 1.


### 22.24 RJ Test

By writing 26 on the word 920 , on word 702 will be written the temperature (in tenths of a degree) measured from the junction.

### 22.25 TA 5 mA measure Test

- Connect the terminals input to calibrator, as described in the calibration chapter.
- Generate 5 mA AC .
- After few seconds, necessary to stabilize the measure, write 27 in word 920.
- On word 702 is written 3 until the measurement is completed. At the end will be written 0 if the measure will be in the limits, otherwise 1.


### 22.26 TA 50 mA measure Test

- Connect the terminals input to calibrator, as described in the calibration chapter.
- Generate 50 mA AC .
- After few seconds, necessary to stabilize the measure, write 28 in word 920.
- On word 702 is written 3 until the measurement is completed. At the end will be written 0 if the measure will be in the limits, otherwise 1.

